Skip to main content Accessibility help
×
Home

Environment influences sugarbeet tolerance to S-metolachlor

  • Andrew B. Lueck (a1), Thomas J. Peters (a2) (a3) and Alexa L. Lystad (a1)

Abstract

Herbicides used in sugarbeet are commonly adapted from other row crops and may cause injury and yield loss often associated with environmental and edaphic factors. Glyphosate-resistant waterhemp in sugarbeet requires a PRE herbicide, such as S-metolachlor, for its control. The objectives of this research were to evaluate sugarbeet tolerance to PRE S-metolachlor, including air temperature and soil water content interactions with soil series in field and growth chamber experiments. Results from field experiments conducted in 12 environments in 2015, 2016, and 2017 indicated 2.16 or 4.32 kg ai ha−1S-metolachlor applied PRE reduced sugarbeet density and stature but did not reduce root yield, sucrose content, or recoverable sucrose compared with the untreated control in environments with soils with less than 3.5% organic matter (OM) and receiving greater than 40-mm cumulative rainfall within 14 d after planting. In the growth chamber, sugarbeet density and shoot fresh weight following S-metolachlor application was influenced by soil moisture content, air temperature, and soil series but not by S-metolachlor rate. Sugarbeet density and shoot fresh weight were reduced 15% and 106%, respectively, when S-metolachlor was applied to a Glyndon sandy loam (2.6% OM, 9.5% clay) at 100% field capacity (FC) and 14 C compared with S-metolachlor application to a Fargo silty clay (7.7% OM and 54% clay) at 100% FC and 21 C. It is concluded that field selection, rather than herbicide rate, is an important criterion for managing sugarbeet tolerance with S-metolachlor.

Copyright

Corresponding author

Author for correspondence: Thomas J. Peters, Department of Plant Sciences, North Dakota State University, Fargo, ND, USA; University of Minnesota, St Paul, MN, USA Email: thomas.j.peters@ndsu.edu

Footnotes

Hide All

Associate Editor: Amit Jhala, University of Nebraska, Lincoln

Footnotes

References

Hide All
Anonymous (2015) Dual Magnum® herbicide label. Greensboro NC: Syngenta Crop Protection, LLC. 50 p
Bollman, SL, Sprague, CL (2007) Optimizing s-metolachlor and dimethanamid-P in sugarbeet microrate treatments. Weed Technol 21:10541063
Bollman, SL, Sprague, CL (2008) Tolerance of 12 sugarbeet varieties to applications of s-metolachlor and dimethenamid-P. Weed Technol 22:699706
Bollman, SL, Sprague, CL (2009) Effect of tillage and soil-applied herbicides with micro-rate herbicide programs on weed control and sugarbeet growth. Weed Technol 23:264269
Bollman, SL, Sprague, CL, Penner, D (2008) Physiological basis for tolerance of sugarbeet varieties to s-metolachlor and dimethenamid-P. Weed Sci 56:1825
Buhler, DD, Hartzler, RG (2001) Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci 49:230235
Cao, P, Wang, X, Liu, F, Zhao, E, Han, L (2008) Dissipation and residue of S-metolachlor in maize and soil. Bull Environ Contam Toxicol 80:391394
Cassel, DK, Nielsen, DR (1986) Field capacity and available water capacity. Pages 901926in Klute, A, ed. Methods of Soil Analyses, 2nd ed. Madison, WI: American Society of Agronomy
Cioni, F, Maines, G (2010) Weed control in sugarbeet. Sugar Tech 12:243255
Conklin, KA, Lym, RG (2013) Effect of temperature and moisture on aminocyclopyrachlor soil half-life. Weed Technol 27:552556
Cordes, JC, Johnson, WG, Scharf, P, Smeda, RJ (2004) Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol 18:9991003
Dexter, AG, Luecke, JL (2004) Dual and Dual Magnum on sugarbeet. Sugarbeet Res Ext Rep 34:7983
Franca, LX (2015) Emergence patterns of common waterhemp and Palmer amaranth in southern Illinois. MS thesis. Carbondale: Southern Illinois University. 114 p
Giles, JF, Cattanach, NR (2004) Effect of plant population and planting date on sugar production—2 year summary. Sugarbeet Res Ext Rep 34:159165
Hartzler, RG, Buhler, DD, Stoltenberg, DE (1999) Emergence characteristics of four annual weed species. Weed Sci 47:578584
Heap, I (2019) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: October 17, 2019
Hinz, JRR, Owen, MDK (1997) Acetolactate synthase resistance in a common waterhemp (Amarantus rudis) population. Weed Technol 11:1318
Horak, MJ, Peterson, DE (1995) Biotypes of Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technol 9:192195
Lueck, AB, Peters, TJ, Khan, MF, Boetel, MA (2017) Survey of weed control and production practices on sugarbeet in Minnesota and eastern North Dakota in 2016. Sugarbeet Res Ext Rep 47:717
Khan, MFR, Hakk, P (2016) Comparing yield and quality of sugarbeet at different plant populations. Sugarbeet Res Ext Rep 46:7778
Meyers, SL, Jennings, KM, Schultheis, JR, Monks, DW (2010) Evaluation of flumioxazin and S-metolachlor rate and timing for palmer amaranth (Amaranthus palmeri) control in sweetpotato. Weed Technol 24:495503
Moore, KJ, Dixon, PM (2014) Analysis of combined experiments revisited. Agron J 107:763771
Obrigawitch, T, Hons, FM, Abernathy, JR, Gipson, JR (1981) Adsorption, desorption, and mobility of metolachlor in soils. Weed Sci 29:332336
O’Connell, PJ, Harms, CT, Allen, JRF (1998) Metolachlor, S-metolachlor and their role within sustainable weed-management. Crop Prot 17:207212
Peters, TJ, Lueck, AB, Carlson, AL (2019) Sugarbeet tolerance when dimethenamid-P follows soil-applied ethofumesate and S-metolachlor. Weed Technol 33:431440
Peters, TJ, Lueck, AB, Groen, C (2017) Continued evaluation for the strategy for managing waterhemp in sugarbeet. Sugarbeet Res Ext Rep 47:3038
Pusino, A, Liu, W, Gessa, C (1992) Influence of organic matter and its clay complexes on metolachlor adsorption on soil. Pestic Sci 36:283286
Rowe, L, Rossman, E, Penner, D (1990) Differential response of corn hybrids and inbreds to metolachlor. Weed Technol 38:563566
Schweizer, EE, Dexter, AG (1987) Weed control in sugarbeets (Beta vulgaris) in North America. Rev Weed Sci 3:113134
Shaner, DL, ed (2014) Herbicide Handbook. 10th ed. Lawrence, KS: Weed Science Society of America. Pp 405408
Shaner, DL, Brunk, G, Belles, D, Westra, P, Nissen, S (2006) Soil dissipation and biological activity of metolachlor and S-metolachlor in five soils. Pest Manag Sci 62:617623
Smith, GA, Schweizer, EE (1983) Cultivar × herbicide interaction in sugarbeet. Crop Sci 23:325328
Smith, LJ (2003) Plant population and date of planting effects on sugarbeet yield and quality. Sugarbeet Res Ext Rep 33:124127
Soltani, N, Dille, A, Robinson, DE, Sprague, CL, Morishita, DW, Lawrence, NC, Kniss, AR, Jha, P, Felix, J, Nurse, RE, Sikkema, PH (2018) Potential yield loss in sugar beet due to weed interference in the United States and Canada. Weed Technol 32:749753
Steckel, LE, Sprague, CL, Hager, AG (2002) Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol 16:755761
Werle, R, Sandell, LD, Buhler, DD, Hartzler, RG, Lindquist, JL (2014) Predicting emergence of 23 summer annual weed species. Weed Sci 62:267279
Westra, EP, Shaner, DL, Barbarick, KA, Khosla, R (2015) Evaluation of sorption coefficients for pyroxasulfone, S-metolachlor, and dimethenamid-p. Air Soil. Water Res 8:915
Wicks, GA, Wilson, RG (1983) Control of weeds in sugarbeets (Beta vulgaris) with hand hoeing and herbicides. Weed Sci 31:493499

Keywords

Environment influences sugarbeet tolerance to S-metolachlor

  • Andrew B. Lueck (a1), Thomas J. Peters (a2) (a3) and Alexa L. Lystad (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.