Skip to main content Accessibility help
×
Home

Efficacy of Fall- and Spring-Applied Pyroxasulfone For Herbicide-Resistant Weeds in Field Pea

  • Breanne D. Tidemann (a1), Linda M. Hall (a1), Eric N. Johnson (a2), Hugh J. Beckie (a3), Ken L. Sapsford (a4) and Lisa L. Raatz (a1)...

Abstract

Field trials were initiated in fall 2011 to determine the potential of pyroxasulfone to control acetolactate synthase (ALS) inhibitor-resistant weeds in field pea. Pyroxasulfone was applied in split-plot trials at five locations in western Canada using fall and PRE spring applications of 0 to 400 g ai ha−1. Trial locations were chosen with a range of soil organic matter content: 2.9, 4.3, 5.5, 10.5, and 10.6% at Scott, Kernen, Kinsella, Melfort, and Ellerslie, respectively. The herbicide dose required to reduce biomass by 50% (ED50) in false cleavers ranged between 53 and 395 g ha−1 at Scott and Ellerslie, respectively. Wild oat ED50s varied between 0.54 g ha−1 at Scott in the fall and 410 g ai ha−1 in the spring at Melfort. ED50s for wild oat and false cleavers varied by 7.4- and 746-fold, respectively, depending primarily on the organic matter content at the trial location. The effect of application timing was not consistent. Significant yield reductions and pea injury occurred at 150 and 100 g ha−1 and higher at Kernen and Scott, respectively. Low organic matter and high precipitation levels at these locations indicates increased herbicide activity under these conditions. Pyroxasulfone may allow control of ALS inhibitor-resistant false cleavers and wild oat; however, locations with high soil organic matter will require higher rates than those with low organic matter for similar control levels.

En el otoño de 2011, se iniciaron estudios de campo para determinar el potencial de pyroxasulfone para el control de malezas resistentes a inhibidores de acetolactate synthase (ALS) en campos de guisante. Se aplicó pyroxasulfone en ensayos de parcelas-divididas en cinco localidades en el oeste de Canadá usando aplicaciones en el otoño y PRE en la primavera de 0 y 400 g ai ha−1. Las localidades fueron escogidas para abarcar diferentes contenidos de materia orgánica: 2.9, 4.3, 5.5, 10.5 y 10.6% en Scott, Kernen, Kinsella, Melfort, y Ellerslie, respectivamente. La dosis requerida para reducir la biomasa en 50% (ED50) de Galium spurium varió entre 53 y 395 g ha−1 en Scott y Ellerslie, respectivamente. La ED50 para Avena fatua varió entre 0.54 g ha−1 en Scott en el otoño y 410 g ha−1 en la primavera en Melfort. Las ED50 variaron para A. fatua y G. spurium entre 7.4 y 746 veces, respectivamente, dependiendo principalmente del contenido de materia orgánica en la localidad donde se realizó el experimento. El efecto del momento de aplicación no fue consistente. Reducciones significativas de rendimiento y daño en el guisante ocurrieron a dosis de 150 y 100 g ha−1 y mayores en Kernen y Scott, respectivamente. Bajos niveles de materia orgánica y altos niveles de precipitación en estas localidades indican, que bajo estas condiciones, hay una mayor actividad del herbicida. Pyroxasulfone podría permitir el control de G. spurium y A. fatua resistentes a herbicidas inhibidores de ALS. Sin embargo, en lugares con alto contenido de materia orgánica se requerirán dosis más altas que las requeridas en suelos con bajos niveles de materia orgánica para obtener un control similar.

Copyright

Corresponding author

Corresponding author's E-mail: blaturnu@ualberta.ca.

References

Hide All
Anonymous (2006) Pyroxasulfone Global Technical Bulletin. Tokyo, Japan: Kumiai Chemical Industry Co., Ltd
Beckie, HJ, Lozinski, C, Shirriff, S, Brenzil, C (2013) Herbicide-resistant weeds in the Canadian prairies: 2007–2011. Weed Technol 27:171183
Boydston, RA, Felix, J, Al-Khatib, K (2012) Preemergence herbicides for potential use in potato (Solanum tuberosum) production. Weed Technol 26:731739
Busi, R, Gaines, T, Walsh, M, Powles, S (2012) Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: Field selection at high doses versus recurrent selection at low doses. Weed Res 52:489499
Hall, LM, Stromme, KM, Horsman, GP, Devine, MD (1998) Resistance to acetolactate synthase inhibitors and quinclorac in a biotype of false cleavers (Galium spurium). Weed Sci 46:390396
Harker, KN (2001) Survey of yield losses due to weeds in central Alberta. Can J Plant Sci 81:339342
Heap, I (2013) International Survey of Herbicide Resistant Weeds. Available at http://www.weedscience.org/In.asp. Accessed June 10, 2013
Hulting, AG, Dauer, JT, Hinds-Cook, B, Curtis, D, Koepke-Hill, RM, Mallory-Smith, C (2012) Management of italian ryegrass (Lolium perenne ssp. multiflorum) in western Oregon with preemergence applications of pyroxasulfone in winter wheat. Weed Technol 26:230235
King, SR, Garcia, JO (2008) Annual broadleaf control with KIH-485 in glyphosate-resistant furrow-irrigated corn. Weed Technol 22:420424
Knezevic, SZ, Porpiglia, PJ, Scott, J, Datta, A (2009) Dose–response curves of KIH-485 for preemergence weed control in corn. Weed Technol 23:3439
Knezevic, SZ, Streibig, JC, Ritz, C (2007) Utilizing R software package for dose–response studies: The concept and data analysis. Weed Technol 21:840848
Mueller, TC, Steckel, LE (2011) Efficacy and dissipation of pyroxasulfone and three chloroacetamides in a Tennessee field soil. Weed Sci 59:574579
Odero, DC, Wright, AL (2013) Response of sweet corn to pyroxasulfone in high organic matter soils. Weed Technol 27:341346
Olson, BL, Zollinger, RK, Thompson, CR, Peterson, DE, Jenks, B, Moechnig, M, Stahlman, PW (2011) Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technol 25:217221
Park, B, Lopetinsky, K, Bjorklund, R, Buss, T, Eppich, S, Laflamme, P, Miller, N, Olson, M, Piquette, K (1999) Pulse Crops in Alberta. Edmonton, Alberta: Alberta Agriculture, Food and Rural Development. P. 149
R Development Core Team (2012). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed: March 10, 2013
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. Journal of Statistical Software 12:122
SAS Institute Inc. (2007) SAS/STAT User's Guide: Statistics. SAS Institute, Cary, North Carolina, U.S.A.
Sikkema, SR, Soltani, N, Sikkema, PH, Robinson, DE (2008) Tolerance of eight sweet corn (Zea mays L.) hybrids to pyroxasulfone. HortScience 43:170172
Soltani, N, Shropshire, C, Sikkema, PH (2012) Response of spring planted cereals to pyroxasulfone. Int Res J Plant Sci 3:113
Statistics Canada (2012) Field and Special Crops (Seeded Area). http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/prim11a-eng.htm. Accessed April 3, 2013
Tanetani, Y, Kaku, K, Kawai, K, Fujioka, T, Shimizu, T (2009) Action mechanism of a novel herbicide, pyroxasulfone. Pestic Biochem Physiol 95:4755
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037
Westra, EP (2012) Adsorption, leaching, and dissipations of pyroxasulfone and two chloroacetabmide herbicides. . Fort Collins, CO: Colorado State University. 69 p

Keywords

Related content

Powered by UNSILO

Efficacy of Fall- and Spring-Applied Pyroxasulfone For Herbicide-Resistant Weeds in Field Pea

  • Breanne D. Tidemann (a1), Linda M. Hall (a1), Eric N. Johnson (a2), Hugh J. Beckie (a3), Ken L. Sapsford (a4) and Lisa L. Raatz (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.