Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-26T08:04:25.508Z Has data issue: false hasContentIssue false

Effect of Annual Grass Cohort Age and Clipping on Herbicide Efficacy

Published online by Cambridge University Press:  20 January 2017

Glenn Wehtje*
Affiliation:
Department of Agronomy and Soils, Auburn University, AL 36849
Stephen F. Enloe
Affiliation:
Department of Agronomy and Soils, Auburn University, AL 36849
*
Corresponding author's E-mail: wehtjgr@auburn.edu

Abstract

Bermudagrass is grown extensively in the southern United States as a livestock forage. Annual grass weeds can be problematic in bermudagrass hay production, few effective control measures are available. Bermudagrass hay is harvested approximately every 28 d. Because most annual grass weeds germinate whenever environmental conditions become appropriate, control options must address a target weed population that varies in age, and may or may not have been mowed during previous harvests. Cohort age has rarely been included in control studies that combine herbicides and mowing. We tested this idea in a greenhouse study. Barnyardgrass, large crabgrass, and green foxtail were seeded on a weekly schedule. The following four treatments were initiated when five cohort ages ranging 8 to 36 d were obtained: clipping only, herbicide only, clipping followed by (fb) herbicide, and a nontreated control. Time interval between clipping and herbicide application was 5 d. Plants were clipped at 5 cm above the soil surface. Herbicide application was a tank mixture of nicosulfuron + metsulfuron at 39.3 + 10.5 g ai ha−1, respectively. Shoots were harvested 21 d after the herbicide treatment, and dry weights of the first three treatments were expressed as percent biomass reduction relative to the age-equivalent nontreated control. Regression analyses indicated a similar response pattern for all three grass species within treatments. For clipping alone, biomass reduction increased as cohort age increased. Conversely for herbicide alone, biomass reduction decreased with age. However, biomass reduction with the clipping fb herbicide treatment was only nominally influenced by grass cohort age, providing ≥ 84% biomass reduction across all cohort ages and species.

En el sur de Estados Unidos, el zacate bermuda (Cynodon dactylon) es usado extensivamente como forraje para ganado. Las malezas gramíneas anuales pueden ser problemáticas en la producción de zacate bermuda, y hay pocas medidas efectivas disponibles para su control. El heno de zacate bermuda se cosecha cada 28 d, aproximadamente. Porque la mayoría de las malezas gramíneas anuales germinan cuando las condiciones ambientales son apropiadas, las opciones de control deben considerar la presencia de poblaciones de malezas que varían en edad, y podrían o no haber sido podadas durante cosechas previas. La edad de los cohortes ha sido raramente incluida en los estudios que combinan el uso de herbicidas con la poda. Nosotros probamos esta idea en un estudio de invernadero. Se sembró Echinochloa crus-galli, Digitaria sanguinalis, y Setaria viridis semanalmente. Los cuatro tratamientos explicados a continuación fueron iniciados cuando las cinco cohortes por edad alcanzaron 8 a 36 d: solamente poda, solamente herbicidas, poda seguida (fb) por herbicidas, y un testigo sin tratamiento. El intervalo entre la poda y la aplicación de herbicidas fue 5 d. Las plantas fueron podadas a 5 cm sobre la superficie del suelo. La aplicación de herbicidas fue una mezcla en tanque de nicosulfuron + metsulfuron a 39.3 + 10.5 g ai ha−1, respectivamente. El tejido aéreo fue cosechado 21 d después del tratamiento con herbicida, y el peso seco de los primeros tres tratamientos se expresó como la reducción en el porcentaje de biomasa en relación al testigo sin tratamiento equivalente en edad. Análisis de regresión indicaron un patrón de respuesta similar para las tres especies gramíneas dentro de cada tratamiento. Para solamente poda, la reducción en la biomasa aumentó al incrementarse la edad del cohorte. En cambio, para solamente herbicida, la reducción en la biomasa disminuyó con la edad del cohorte. Sin embargo, la reducción de la biomasa en el tratamiento de poda fb herbicidas fue solamente nominalmente influenciada por la edad del cohorte, brindando una reducción de biomasa ≥84% en todos las edades de cohorte y en todas las especies.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010. Poast® herbicide label. BASF, Research Triangle Park, NC 27709. http://www.cdms.net/LDat/ld00F009.pdf. Accessed November 12, 2012.Google Scholar
Beam, J. B., Barker, L. W. L., and Askew, S. D. 2005. Italian ryegrass (Lolium multiflorum) control in newly seeded tall fescue. Weed Technol. 19:416421.Google Scholar
Beck, K. G. and Sebastian, J. R. 2000. Combining mowing and fall-applied herbicides to control Canada thistle (Cirsium arvense). Weed Technol. 14:351356.CrossRefGoogle Scholar
Booth, B. D., Murphy, S. D., and Swanton, C. J. 2003. Weed Ecology in Natural and Agricultural Systems. Cambridge, MA CABI Publishing. 303 p.Google Scholar
Bradley, K. W. and Hagood, E. S. Jr. 2002. Influence of sequential herbicide treatment, herbicide application timing, and mowing of mugwort (Artemisia vulgaris) control. Weed Technol. 16:346352.CrossRefGoogle Scholar
Edwards, M. T., Meredith, J. H., Smith, J. D., and Hammes, G. H. 2010. Grass and broadleaf weed control in bermudagrass pastures with Dupont Pastora® herbicide. Proc. South. Weed Sci. Soc. 63:152.Google Scholar
Enloe, S. F., Dorough, H., Ducar, J. T., and Aulakh, J. S. 2012. Little barley control with herbicides in dormant bermudagrass hayfields. Forage and grazing lands. DOI: .CrossRefGoogle Scholar
Finnerty, D. W. and Klingman, D. L. 1962. Life cycles and control studies of some weed bromegrasses. Weeds. 10:4047.CrossRefGoogle Scholar
Grichar, W. J., Jaks, A. J., and Nerada, J. D., 2000. Field sandbur control in using Gramoxone, Roundup Ultra, or Touchdown. Tex. J. Agric. Nat. Resource. 13:17.Google Scholar
Kells, J. J., Meggitt, W. F., and Penner, D. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143149.Google Scholar
Krausz, R. F., Kapustra, G., and Matthews, J. L. 1993. The effect of giant foxtail (S. faberi) plant height on control with six postemergence herbicides. Weed Technol. 7:491494.Google Scholar
MacDonald, G. E., Brecke, B. J., Colvin, D. L., and Shilling, D. G. 1994. Chemical and mechanical control of dogfennel (Eupatorium capillifolium). Weed Technol. 8:483487.CrossRefGoogle Scholar
Matocha, M. A., Grichar, W. J., and Grymes, C. 2010. Field sandbur (Cenchrus spinifex) control and bermudagrass response to nicosulfuron tank mix combinations. Weed Technol. 24:510514.Google Scholar
McCarty, L. B. 1991. Goosegrass (Eleusine indica) control in bermudagrass (Cynodon spp.) turf with diclofop. Weed. Sci. 39:255261.Google Scholar
McCullough, P. E., Gómez de Barreda, D., and Raymer, P. 2012. Nicosulfuron use with foramsulfuron and sulfentrazone for late summer goosegrass (Eleusine indica) control in bermudagrass and seashore paspalum. Weed Technol. 26:376381.Google Scholar
Mislevy, P., Mullahey, J. J., and Martin, F. G. 1999. Preherbicide mowing and herbicide rate on tropical soda apple (Solanum viarum) control. Weed Technol. 13:172175.Google Scholar
Mohler, C. L. 2001. Weed life history: identifying vulnerabilities. Pages 4098 in Liebman, M., Mohler, C. L., and Staver, C. P., eds. Ecological Management of Agricultural Weeds. New York, NY Cambridge University Press.Google Scholar
Renz, M. J. and DiTomaso, J. M. 1998. The effectiveness of mowing and herbicides to control perennial pepperweed (Lepidium latifolium) in rangeland and roadside habitats. Proc. Calif. Weed Sci. Soc. 50:178.Google Scholar
Renz, M. J. and DiTomaso, J. M. 2004. Mechanism for the enhanced effect of mowing followed by glyphosate application to resprouts of perennial pepperweed (Lepidium latifolium). Weed. Sci. 52:1423.Google Scholar
Schreiber, M. M. 1965. Effect of date of planting and stage of cutting on seed production of giant foxtail. Weeds. 13:6062.Google Scholar
Smith, A. E. 1974. How weeds influence the pasture environment. Proc. South. Weed Sci. Soc. 27:3541 Google Scholar
Snedecor, G. W. and Cochran, W. G. 1967. Statistical Methods. Ames, IA Iowa State University Press. 593 p.Google Scholar
Taliaferro, C. M., Fouquette, F. M. Jr., and Mislevy, P. 2004. Bermudagrass and stargrass, Pages 417438 in Moser, L. E., Burson, B. L., and Sollenberger, L. E., eds. Warm-season (C4) grass. Monograph 45. Madison, WI American Society of Agronomy.Google Scholar
Teuton, T. C., Unruh, J. B., Brecke, B. J., MacDonald, G. E., Miller, G. L., and Ducar, J. T. 2004. Tropical signalgrass (Urochloa subquadripara) control with preemergence- and postemergence-applied herbicides. Weed Technol. 18:419425.Google Scholar