Skip to main content Accessibility help
×
Home

Droplet-Size Effects on Control of Chloris spp. with Six POST Herbicides

  • J. Connor Ferguson (a1), Bhagirath S. Chauhan (a2), Rodolfo G. Chechetto (a3), Andrew J. Hewitt (a4), Steve W. Adkins (a5), Greg R. Kruger (a6) and Chris C. O’Donnell (a7)...

Abstract

Chloris spp. are warm-season grasses that outcompete crops for scarce resources throughout Australia. In Queensland, mild winters and increased adoption of conservation tillage practices have led to an increase of this warm-season grass family in winter crops. The objective of this study is to understand whether droplet size (nozzle type) effects herbicide efficacy of summer perennial grasses, as previous research found no effect of droplet size (nozzle type) on herbicide efficacy of winter annual grasses. A study to compare droplet-size (nozzle type) effects on control of windmillgrass and its domesticated relative, rhodesgrass, was conducted at the University of Queensland in Gatton, QLD, Australia. Results showed little difference in dry weight reductions for windmillgrass or rhodesgrass across droplet size (nozzle type). Paraquat applications with the TTI nozzle resulted in significantly lower dry weight reductions compared with other droplet-size sprays (nozzle types) for rhodesgrass. Glyphosate, imazamox plus imazapyr, and clodinafop resulted in commercially acceptable control for both species, regardless of the droplet size (nozzle type) selected, indicating droplet size (nozzle type) has relatively little impact on the efficacy of these herbicides. Proper nozzle selection can result in control of Chloris spp., a hard to control weed species, while reducing the occurrence of spray drift to nearby sensitive areas.

Copyright

Corresponding author

Author for correspondence: J. Connor Ferguson, Department of Plant and Soil Sciences, Mississippi State University, 117 Dorman Hall, Mississippi State, MS 39762. (Email: connor.ferguson@msstate.edu)

Footnotes

Hide All

Cite this article: Ferguson JC, Chauhan BS, Chechetto RG, Hewitt AJ, Adkins SW, Kruger GR, O’Donnell CC (2019) Droplet-size effects on control of Chloris spp. with six POST herbicides. Weed Technol 33:153–158. doi: 10.1017/wet.2018.99

Footnotes

References

Hide All
[ASAE] American Society of Agricultural and Biological Engineers (2009) Spray Nozzle Classification by Droplet Spectra. Standard 572.1. St Joseph, MI: American Society of Agricultural and Biological Engineers
[ABARES] Australian Bureau of Agricultural and Resource Economics and Sciences (2012) Agricultural Yearbook 2012. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/1301.0~2012~Main%20Features~Agricultural%20production~260. Accessed: November 12, 2015
Borger, J, Ferris, D (2013) Tolerance of Subtropical Grasses to In-Crop Selective Herbicides during Winter. GRDC Crop Updates Western Australia. 3 p. http://www.giwa.org.au/_literature_125844/Borger,_John_et_al_Tolerance_of_subtropical_grasses_to_in-crop_grass. Accessed: November 14, 2015
Borger, CPD, Reithmuller, G, Hashem, A (2009) Control of windmillgrass over the summer fallow increase wheat yield. Pages 48–51 in Zydenbos SM, ed., Proceedings of the 17th Australasian Weeds Conference. Christchurch, NZ: New Zealand Plant Protection Society
Byass, JB, Lake, JR (1977) Spray drift from a tractor-powered field sprayer. Pestic Sci 8:117126
Cook, T (2014) The Northern Grains Region: its unique herbicide resistance challenges. Pages 308–311 in Baker M, ed., Proceedings of the 19th Australasian Weed Conference. Hobart, TAS: Tasmanian Weed Society
Cook, T, Brooke, G, Street, M, Widderick, M (2014) Herbicides and Weeds—Regional Issues, Trials and Developments. GRDC Crop Updates Goondiwindi 2014. https://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2014/03/Herbicides-and-weeds-regional-issues-trials-and-developments. Accessed: November 12, 2015
Dorr, GJ, Hewitt, AJ, Adkins, SW, Hanan, J, Zhang, H, Noller, BA (2013) Comparison of initial spray characteristics produced by agricultural nozzles. Crop Prot 53:109117
[EPA] U.S. Environmental Protection Agency (1999) Spray drift on pesticides. EPA Publication No. 735 F99024. Washington, DC: U.S. Environmental Protection Agency
[FAO] Food and Agricultural Organization of the United Nations (2011) FAO STAT Comparison of Wheat Area of Australia to the Rest of the World. http://faostat3.fao.org/home/E. Accessed: November 12, 2015
Felton, WL, Wicks, GA, Welsby, SM (1994) A survey of fallow practices and weed floras in wheat stubble and grain sorghum in northern New South Wales. Aust J Exp Agri 34:22236
Ferguson, JC, Chechetto, RG, Adkins, SW, Hewitt, AJ, Chauhan, BS, Kruger, GR, O’Donnell, CC (2018). Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Prot 112:118124
Ferguson, JC, Chechetto, RG, Hewitt, AJ, Chauhan, BS, Adkins, SW, Kruger, GR, O’Donnell, CC (2016a) Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Prot 81:1419
Ferguson, JC, Chechetto, RG, O’Donnell, CC, Dorr, GJ, Moore, JH, Baker, GJ, Powis, KJ, Hewitt, AJ (2016b) Determining the drift potentials of Venturi nozzles compared to standard nozzles across three insecticide spray solutions in a wind tunnel. Pest Manag Sci 72:14601466
Ferguson, JC, O’Donnell, CC, Chauhan, BS, Adkins, SW, Kruger, GR, Wang, R, Urach Ferreira, P, Hewitt, AJ (2015) Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Prot 76:16
Grover, R, Kerr, LA, Maybank, J, Yoshida, K (1978) Field measurements of droplet drift from ground sprayers. Can J Plant Sci 58:611622
Hennigh, DS, Al-Khatib, K, Stahlman, PW, Shoup, DE (2005) Prairie cupgrass (Erichloa contract) and windmillgrass (Chloris verticillata) response to glyphosate and acetyl-CoA carboxylase-inhibiting herbicides. Weed Sci 53:31532210.1614/WS-04-112R
Hewitt, AJ (1997) The importance of droplet size in agricultural spraying. Atomization Sprays 7:235244
Kenward, MG, Roger, JH (1997) Small sample interference for fixed effects from restricted maximum likelihood. Biometrics 53:98399710.2307/2533558
Lamp, C, Forbes, S, Cade, J (2001) Grasses of Temperate Australia—A Field Guide. Melbourne, VIC, Australia: Blooming Books. 310 p
Michael, PJ, Borger, CP, MacLeod, WJ, Payne, PL (2010) Occurrence of summer fallow weeds within the grain belt region of southwestern Australia. Weed Technol 24:56256810.1614/WT-D-09-00060.1
Milford, R, Minson, DJ (1968) The digestibility and intake of six varieties of Rhodes grass (Chloris gayana). Aust J Exp Agric Anim Husb 8:413418
Mueller, TC, Womac, AR (1997) Effect of formulation and nozzle type on droplet size with isopropylamine and trimesium salts of glyphosate. Weed Technol 11:639643
Patra, J, Lenka, M, Panda, BB (1994) Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. New Phytol 128:165171
Peltzer, SC, Hashem, A, Osten, VA, Gupta, ML, Diggle, AJ, Reithmuller, GP, Douglas, A, Moore, JA, Koetz, EA (2009) Weed management in wide-row cropping systems: a review of current practices and risks for Australian farming systems. Crop Pasture Sci 60:395406
Sidak, Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Soc 62:626633
Southcombe, ESE, Miller, PCH, Ganzelmeier, H, Van de Zande, JC, Miralles, A, Hewitt, AJ (1997) The International (BCPC) Spray Classification System Including a Drift Potential Factor. Pages 371–380 in Proceedings of the Brighton Crop Protection Conference—Weeds. Brighton, UK: Brighton Crop Protection Conference
Stobbs, TH (1973) The effect of plant structure on the intake of tropical pastures. II Differences in sward structure, nutritive value, and bite size of animals grazing Setaria anceps and Chloris gayana at various stages of growth. Aust J Agric Res 24:82182910.1071/AR9730821
Syme, H, Botwright Acuña, TL, Abrecht, D, Wade, LJ (2007) Nitrogen contributions in a windmill grass (Chloris truncata) wheat (Triticum aestivum L.) system in south-western Australia. Aust J Soil Res 45:635642
Uk, S (1977) Tracing insecticide spray droplets by sizes on natural surfaces. The state of the art and its value. Pestic Sci 8:501509
Wicks, GA, Felton, WL, Murison, RD, Martin, RJ (2000) Changes in fallow weed species in continuous wheat in northern New South Wales 1981–1990. Aust J Exp Agri 40:831842
Yang, CW, Zhang, ML, Liu, J, Shi, DC, Wang, DL (2009) Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata) Phytosynthetica 47:5560

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed