Skip to main content Accessibility help
×
Home

Corn Tolerance to Weed Interference Varies with Preceding Crop

  • Randy L. Anderson (a1)

Abstract

Crop diversity may improve tolerance to weed interference and reduce the need for herbicides. This experiment measured weed interference in corn as affected by the preceding crop in two studies. The first study, based on interference of the resident weed community, compared dry pea, soybean, canola, and spring wheat for effect on corn tolerance to weeds. Prominent weeds were green and yellow foxtail. The second study examined corn tolerance to a uniform infestation of foxtail millet as affected by dry pea, soybean, spring wheat, and corn as preceding crops. Each plot was split into weed-free and weed-infested subplots in both studies. Corn was most tolerant to weed interference following dry pea; compared with soybean, dry pea improved corn tolerance more than twofold. Corn also yielded the highest in weed-free conditions following dry pea; compared across 4 yr, corn yielded 7 to 23% more following dry pea than following either soybean or spring wheat. Crop diversity has helped producers reduce herbicide inputs in the Great Plains and may provide an additional benefit of reducing weed impact on crop yield.

La diversidad de cultivos podría mejorar la tolerancia a la interferencia de malezas y reducir la necesidad del uso de herbicidas. Este experimento midió en dos estudios la interferencia de malezas en maíz y de cómo fue afectada por el cultivo precedente. El primer estudio, basado en la interferencia de la comunidad nativa de malezas, comparó el efecto que tuvieron el guisante seco, soya, canola y trigo de primavera en la tolerancia del maíz a las malezas. Las malezas más abundantes fueron Setaria viridis y Setaria glauca. El segundo estudio examinó la tolerancia del maíz a una infestación uniforme de Setaria italica y cómo fue afectada por el guisante seco, soya, trigo de primavera y maíz como cultivos precedentes. Cada parcela se dividió en sub-parcelas libres e infestadas de maleza en ambos estudios. Sembrado después del guisante seco, el maíz fue más tolerante a la interferencia de la maleza. En comparación con la soya, el guisante seco mejoró la tolerancia del maíz más del doble. El maíz también tuvo el mayor rendimiento en condiciones libres de maleza, seguido por el guisante seco. Promediando los cuatro años, el maíz rindió de 7 a 23% más al ser sembrado después del guisante seco que después de la soya o del trigo de primavera. La diversidad de cultivos ha ayudado a los productores a reducir las aplicaciones de herbicidas en las Grandes Planicies y puede proporcionar un beneficio adicional al reducir el impacto de las malezas en el rendimiento del cultivo.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Corn Tolerance to Weed Interference Varies with Preceding Crop
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Corn Tolerance to Weed Interference Varies with Preceding Crop
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Corn Tolerance to Weed Interference Varies with Preceding Crop
      Available formats
      ×

Copyright

Corresponding author

Corresponding author's E-mail: randy.anderson@ars.usda.gov

References

Hide All
Anderson, R. L. 2004. Impact of subsurface tillage on weed dynamics in the central Great Plains. Weed Technol. 18:186192.
Anderson, R. L. 2005a. A multi-tactic approach to manage weed population dynamics in crop rotations. Agron. J. 97:15791583.
Anderson, R. L. 2005b. Are some crops synergistic to following crops? Agron. J. 97:710.
Anderson, R. L. 2008. Diversity and no-till: keys for pest management in the U.S. Great Plains. Weed Sci. 56:141145.
Anderson, R. L. 2009. Impact of preceding crop and cultural practices on rye growth in winter wheat. Weed Technol. 23:564568.
Anderson, R. L. 2011. Synergism: a rotational effect of improved growth efficiency. Adv. Agron. 112:205226.
Bastianns, L., Kropff, M. J., Goudriaan, J., and van Laar, H. H. 2000. Design of weed management systems with a reduced reliance on herbicides poses new challenges and prerequisites for modeling crop-weed interactions. Field Crops Res. 67:161179.
Beck, D. L. 2010. Successful No-Till for the Central and Northern Plains. Dakota Lakes Research Farm, http://www.dakotalakes.com. Accessed: November 12, 2010.
Hobbs, P. R. 2007. Conservation agriculture: what it is and why it is important for future sustainable food production? J. Agric. Sci. 145:127137.
Katsvairo, T., Cox, W. J., and van Es, H. 2002. Tillage and rotation effects on soil physical characteristics. Agron. J. 94:299304.
Kirkegaard, J., Christen, O., Krupinsky, J., and Layell, D. 2008. Break crops benefits in temperate wheat production. Field Crop Res. 107:185195.
Krupinsky, J. M., Bailey, K. L., McMullen, M. P., Gossen, B. D., and Turkington, T. K. 2002. Managing plant disease risk with diversified cropping systems. Agron. J. 94:198209.
Kumar, V., Mills, D. J., Anderson, J. D., and Mattoo, A. K. 2004. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl. Acad. Sci. U. S. A. 101:1053510540.
Lewis, W. J., van Lenteren, J. C., Phatak, S. C., and Tumlinson, J. H. III. 1997. A total system approach to sustainable pest management. Proc. Natl. Acad. Sci. U. S. A. 94:1224312248.
Lupwayi, N. Z., Clayton, G. W., Hanson, K. G., Rice, W. A., and Biederbeck, V. O. 2004. Endophytic rhizobia in barley, wheat and canola roots. Can. J. Plant Sci. 84:3745.
Riggs, P. J., Chelius, M. K., Iniquez, A. L., Kaeppler, S. M., and Triplett, E. W. 2001. Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust. J. Plant Physiol. 28:829–236.836.
Sooby, J., Landeck, J., and Lipson, M. 2007. National Organic Research Agenda. Organic Farming Research Foundation, http://www.ofrf.org. Accessed: April 14, 2011.
Sturz, A. V. and Chrisite, B. R. 2003. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72:107123.
Swan, J. B., Higgs, R. L., Bailey, T. B., Wollenhaupt, N. C., Paulson, W. H., and Peterson, A. E. 1994. Surface residue and in-row treatment effects on long-term no-tillage continuous corn. Agron. J. 86:711718.
Vereijken, R. 2002. Transition to multifunctional land use and agriculture. Neth. J. Agric. Sci. 50:171179.
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571586.
Vetsch, J. A. and Randall, G. W. 2000. Enhancing no-tillage systems for corn with starter fertilizer, row cleaners, and nitrogen placement factors. Agron. J. 92:309315.
Vyn, T. J. and Hooker, D. C. 2002. Assessment of multiple- and single-factor stress impacts on corn. Field Crops Res. 75:123137.
Zhang, J., Hamill, A. S., and Weaver, S. E. 1996. Corn yields after 10 years of different cropping sequences and weed management practices. Can. J. Plant Sci. 76:795797.

Keywords

Corn Tolerance to Weed Interference Varies with Preceding Crop

  • Randy L. Anderson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed