Skip to main content Accessibility help
×
Home

Corn and Rice Response to Simulated Drift of Imazethapyr Plus Imazapyr

  • Jason A. Bond (a1), James L. Griffin (a1), Jeffrey M. Ellis (a1), Steven D. Linscombe (a2) and Bill J. Williams (a3)...

Abstract

Field research was conducted for 2 yr to evaluate response of corn and rice to simulated drift rates of a commercial premix of imazethapyr plus imazapyr [3:1 (w/w)]. Drift rates of the imazethapyr plus imazapyr premix represented 0.8, 1.6, 3.2, 6.3, and 12.5% of the usage rate of 63 g ai/ha (0.5, 1, 2, 4, and 7.9 g/ha, respectively). The imazethapyr plus imazapyr premix applied to six-leaf corn at 7.9 g/ha reduced height 11% compared with the nontreated control 7 days after treatment (DAT) but did not affect corn height 14 and 28 DAT. Corn yield was equivalent regardless of imazethapyr plus imazapyr rate and ranged from 10,200 to 11,500 kg/ha. At 28 DAT, rice height was reduced 12% when 7.9 g/ha of the imazethapyr plus imazapyr premix was applied early postemergence (EPOST) at two- to three-leaf and 14 and 5% when the imazethapyr plus imazapyr premix at 7.9 and 4 g/ha, respectively, was applied late postemergence (LPOST) at panicle differentiation. Reductions in mature rice height of 11 and 6% were observed when the imazethapyr plus imazapyr premix was applied LPOST at 7.9 and 4 g/ha, respectively, and a 5% reduction was observed for 7.9 g/ha of the imazethapyr plus imazapyr premix applied EPOST. Application of the imazethapyr plus imazapyr premix EPOST at 7.9 g/ha delayed heading in only 1 yr, but heading was delayed both years when applied LPOST. Rice yield was reduced 39 and 16% when the imazethapyr plus imazapyr premix was applied LPOST at 7.9 and 4 g/ha, respectively, compared with a 9% yield reduction for 7.9 g/ha applied EPOST.

Copyright

Corresponding author

Corresponding author's E-mail: jbond@agcenter.lsu.edu

References

Hide All
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992a. Alfalfa (Medicago sativa) response to simulated herbicide spray drift. Weed Technol. 6:956960.
Al-Khatib, K., Parker, R., and Fuerst, E. P. 1992b. Sweet cherry (Prunus avium) response to simulated drift from selected herbicides. Weed Technol. 6:975979.
Banks, P. A. and Schroeder, J. 2002. Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol. 16:833837.
Bouse, L. F., Carlton, J. B., and Merkle, M. G. 1976. Spray recovery from nozzles designed to reduce drift. Weed Sci. 24:361365.
Eberlein, C. V. and Guttieri, M. J. 1994. Potato (Solanum tuberosum) response to simulated drift of imidazolinone herbicides. Weed Sci. 42:7075.
Ellis, J. M. and Griffin, J. L. 2002. Soybean (Glycine max) and cotton (Gossypium hirsutum) response to simulated drift of glyphosate and glufosinate. Weed Technol. 16:580586.
Ellis, J. M., Griffin, J. L., and Jones, C. A. 2002. Effect of carrier volume on corn (Zea mays) and soybean (Glycine max) response to simulated drift of glyphosate and glufosinate. Weed Technol. 16:587592.
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol. 17:452460.
Ghosheh, H. Z., Chandler, J. M., and Bierman, R. H. 1994. Impact of DPX-PE350 drift on corn and grain sorghum. Proc. South. Weed Sci. Soc. 47:24.
Hanks, J. E. 1995. Effect of drift retardant adjuvants on spray droplet size of water and paraffinic oil applied at ultralow volume. Weed Technol. 9:380384.
Hurst, H. R. 1982. Cotton (Gossypium hirsutum) response to simulated drift from selected herbicides. Weed Sci. 30:311315.
Kelly, S. T., Sanders, D. E., Koske, T. J., Cannon, J. M., Boudreaux, J. E., Owings, A. D., and Strahan, R. E. 2005. 2005. Louisiana Suggested Chemical Weed Control Guide: Web page: http://www.lsuagcenter.com/weedguide/pdf/RICE.pdf. Accessed: March 7, 2005.
Richard, E. P. Jr., Hurst, H. R., and Wauchope, R. D. 1981. Effects of simulated MSMA drift on rice (Oryza sativa) growth and yield. Weed Sci. 29:303308.
Smith, D. B., Harris, F. D., and Goering, C. E. 1982. Variables affecting drift from ground boom sprayers. Trans. Am. Soc. Agric. Engin. 25:14991503.
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5:493498.
Wall, D. A. 1994. Potato (Solanum tuberosum) response to simulated drift of dicamba, clopyralid, and tribenuron. Weed Sci. 42:110114.
Wauchope, R. D., Richard, E. P. Jr., and Hurst, H. R. 1982. Effects of simulated MSMA drift on rice (Oryza sativa). II: arsenic residues in foliage and grain and relationships between arsenic residues, rice toxicity symptoms, and yields. Weed Sci. 30:405410.
Wolf, T. M., Grover, R., Wallace, K., Shewchuk, S. R., and Maybank, J. 1992. Effect of protective shields on drift and deposition characteristics of field sprayers. in The Role of Application Factors in the Effectiveness and Drift of Herbicides. Regina, SK, Canada: Agric. Canada, Pp. 2952.

Keywords

Related content

Powered by UNSILO

Corn and Rice Response to Simulated Drift of Imazethapyr Plus Imazapyr

  • Jason A. Bond (a1), James L. Griffin (a1), Jeffrey M. Ellis (a1), Steven D. Linscombe (a2) and Bill J. Williams (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.