Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-zqvvz Total loading time: 1.052 Render date: 2021-04-12T00:07:41.377Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of Diflufenzopyr Addition to Picolinic Acid Herbicides for Russian Knapweed (Acroptilon repens) Control

Published online by Cambridge University Press:  20 January 2017

Stephen F. Enloe
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY
Andrew R. Kniss
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY
Corresponding
E-mail address:

Abstract

Diflufenzopyr is a synergist that has improved the efficacy of certain auxin-type herbicides such as dicamba on many broadleaf weed species. However, little is known regarding the activity of diflufenzopyr with other auxin-type herbicides. Russian knapweed is an invasive creeping perennial that is susceptible to certain pyridine carboxylic acids, which are auxin-type herbicides. The objective of this research was to determine if the addition of diflufenzopyr to three pyridine carboxylic acid herbicides enhances long-term control of Russian knapweed in Wyoming. All treatments were applied in the fall. Treatments included aminopyralid (0, 0.05, 0.09, and 0.12 kg ae/ha), clopyralid (0, 0.16, 0.21, 0.31, and 0.42 kg ae/ha) and picloram (0, 0.14, 0.28, 0.42, and 0.56 kg ae/ha), applied with and without diflufenzopyr (0.06 and 0.11 kg ae/ha). Twelve mo after treatment (MAT), diflufenzopyr had no significant impact on Russian knapweed control with either aminopyralid or picloram, and had significant but inconsistent impacts on knapweed control with clopyralid. At 24 MAT, diflufenzopyr did not enhance Russian knapweed control with either aminopyralid or clopyralid and was slightly antagonistic with picloram. These results indicate that the addition of diflufenzopyr does not improve Russian knapweed control with fall applications of either aminopyralid, clopyralid, or picloram.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anonymous, , 2009. Tordon® 22K herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld0AJ012.pdf. Accessed: March 6, 2009.Google Scholar
Anonymous, , 2008a. Milestone® herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld77N006.pdf. Accessed: March 6, 2009.Google Scholar
Anonymous, , 2008b. Transline® herbicide label. Dow AgroSciences. http://www.cdms.net/LDat/ld0BB014.pdf. Accessed: March 6, 2009.Google Scholar
Anonymous, , 2004. Overdrive® herbicide label. BASF. http://www.cdms.net/LDat/ld6CA004.pdf. Accessed: December 8, 2008.Google Scholar
Bowe, S., Landes, M., Best, J., Schmitz, G., and Graben, M. 1999. BAS 662 H: an innovative herbicide for weed control in corn. Proc. Brighton Conf. Weeds 1:3540.Google Scholar
Boyles, M. C. and Smith, K. L. 2000. Potential use of diflufenzopyr in combination with dicamba for weed control in pastures. Proc. South. Weed Sci. Soc 53:60.Google Scholar
Bussan, A. J. and Dyer, W. E. 1999. Herbicides and rangeland. Pages 116132. In Sheley, R. L. and Petroff, J. K. Biology and Management of Noxious Range Weeds. Corvallis, OR: Oregon State University Press.Google Scholar
Enloe, S. F., Kyser, G. B., Dewey, S. A., Peterson, V. F., and DiTomaso, J. M. 2008. Russian knapweed (Acroptilon repens) control with low rates of aminopyralid on range and pasture. Invasive Plant Sci. Manage 1:385389.CrossRefGoogle Scholar
Enloe, S. F., Lym, R. G., Wilson, R., et al. 2007. Canada thistle (Cirsium arvense) control with aminopyralid in range, pasture, and noncrop areas. Weed Technol 21:890894.CrossRefGoogle Scholar
Ferrell, J. A., Mullahey, J. J., Langeland, K. A., and Kline, W. N. 2006. Control of tropical soda apple (Solanum viarum) with aminopyralid. Weed Technol 20:453457.CrossRefGoogle Scholar
Grossman, K., Casper, G., Kwiatkowski, J., and Bowe, S. J. 2002. On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba. Pest Manage. Sci 58:10021014.CrossRefGoogle Scholar
Lym, R. G. and Deibert, K. J. 2005. Diflufenzopyr influences leafy spurge (Euphorbia esula) and Canada thistle (Cirsium arvense) control by herbicides. Weed Technol 19:329341.CrossRefGoogle Scholar
Ni, H., Wehtje, G., Walker, R. H., Belcher, J. L., and Blythe, E. K. 2006. Turf tolerance and Virginia buttonweed (Diodia virginiana) control with fluroxypyr as influenced by the synergist diflufenzopyr. Weed Technol 20:511519.CrossRefGoogle Scholar
R Development Core Team 2008. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org. Accessed: December 2008.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay Analysis Using R. J. Statistical Software 12/5:http://www.jstatsoft.org/. Accessed: December 1, 2008.CrossRefGoogle Scholar
Wehtje, G. 2008. Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol 22:679684.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Diflufenzopyr Addition to Picolinic Acid Herbicides for Russian Knapweed (Acroptilon repens) Control
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Diflufenzopyr Addition to Picolinic Acid Herbicides for Russian Knapweed (Acroptilon repens) Control
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Diflufenzopyr Addition to Picolinic Acid Herbicides for Russian Knapweed (Acroptilon repens) Control
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *