Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-25T13:48:52.156Z Has data issue: false hasContentIssue false

Synthesis of GaN nanorods using Tantalum catalyst by magnetron sputtering

Published online by Cambridge University Press:  31 October 2007

Hong Li
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Chengshan Xue*
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Huizhao Zhuang
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Jinhua Chen
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Zhaozhu Yang
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Lixia Qin
Affiliation:
Institute of Semiconductor, Shandong Normal University, Jinan 250014, P.R. China
Get access

Abstract

Single crystalline wurzite GaN nanorods are successfully synthesized on the tantalum catalyzed Si substrate by RF magnetron sputtering. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and photoluminescence (PL). The results show that the nanorods have a hexagonal wurtzite structure with diameters ranging from 80 to 200 nm and lengths typically up to 10 µm. The PL spectrum exhibits a strong UV light emission at 364 nm. The growth mechanism of the crystalline GaN nanorods is discussed briefly.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, S.A., Reeves, R.J., Haase, C.S., Appl. Phys. Lett. 75, 3285 (1999) CrossRef
Morales, A.M., Lieber, C.M., Science 279, 208 (1998) CrossRef
Han, W.Q., Fan, S.S., Li, Q.Q., et al., Science 277, 1287 (1997)
Goldberger, J., He, R., Zhang, Y., Nature 422, 599 (2003) CrossRef
Duan, X., Lieber, C.M., J. Am. Chem. Soc. 122, 188 (2002) CrossRef
Zhang, J., Zhang, L.D., Wang, X.F., et al., J. Chem. Phys. 115, 5714 (2001) CrossRef
Lyu, S.C., Cha, O.H., Suh, E.K., Ruh, H., Lee, H.J., Chem. Phys. Lett. 367, 136 (2003) CrossRef
Perlin, P., Jauberthiecarillon, C., Itie, J.P., et al., Phys. Rev. B 45, 83 (1992) CrossRef
Monemar, B., Phys. Rev. B 10, 676 (1974) CrossRef
B.K. Ridley, in Quantum Process in Semiconductors (Clarendon, Oxford, 1982), pp. 62–66
Korotkov, R.Y., Reshchikov, M.A., Wessels, B.W., Physica B 273, 80 (1999) CrossRef
Xue, C., Wu, Y., Zhuang, H., et al., Physica E 30, 179 (2005) CrossRef
Xu, B.S., Zhai, L.Y., Liang, J., Ma, S.F., Jia, H.S., Liu, X.G., J. Cryst. Growth 291, 34 (2006) CrossRef
Kim, T.Y., Lee, S.H., Mo, Y.H., Shim, H.W., et al., J. Cryst. Growth 257, 97 (2003) CrossRef
Simpkins, B.S., Ericson, L.M., Stroud, R.M., et al., J. Cryst. Growth 290, 115 (2006) CrossRef