Skip to main content Accessibility help
×
×
Home

White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression

  • Sebastian Köhler (a1), Alan J. Thomas (a2), Adrian Lloyd (a3), Robert Barber (a2), Osvaldo P. Almeida (a4) and John T. O'Brien (a2)...

Abstract

Background

Cerebrovascular changes and glucocorticoid mediated hippocampal atrophy are considered relevant for depression-related cognitive deficits, forming putative treatment targets.

Aims

This study examined the relative contribution of cortisol levels, brain atrophy and white matter hyperintensities to the persistence of cognitive deficits in older adults with depression.

Method

Thirty-five people aged ⩾60 years with DSM–IV major depression and twenty-nine healthy comparison controls underwent magnetic resonance imaging (MRI) and were underwent magnetic resonance imaging (MRI) and were followed up for 18 months. We analysed the relationship between baseline salivary cortisol levels, whole brain, frontal lobe and hippocampal volumes, severity of white matter hyperintensities and follow-up cognitive function in both groups by testing the interaction between the groups and these biological measures on tests of memory, executive functions and processing speed in linear regression models.

Results

Group differences in memory and executive function follow-up scores were associated with ratings of white matter hyperintensities, especially of the deep white matter and periventricular regions. Compared with healthy controls, participants with depression scoring within the third tertile of white matter hyperintensities dropped two and three standard deviations in executive function and memory scores respectively. No biological measure related to group differences in processing speed, and there were no significant interactions between group and cortisol levels, or volumetric MRI measures.

Conclusions

White matter hyperintensities, rather than cortisol levels or brain atrophy, are associated with continuing cognitive impairments in older adults with depression. The findings suggest that cerebrovascular disease rather than glucocorticoid-mediated brain damage are responsible for the persistence of cognitive deficits associated with depression in older age.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression
      Available formats
      ×

Copyright

Corresponding author

John T. O'Brien, Wolfson Research Centre, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK. Email: j.t.o'brien@ncl.ac.uk

Footnotes

Hide All

Declaration of interest

None.

Footnotes

References

Hide All
1 Thomas, AJ, O'Brien, JT. Depression and cognition in older adults. Curr Opin Psychiatry 2008; 21: 813.
2 Bhalla, RK, Butters, MA, Mulsant, BH, Begley, AE, Zmuda, MD, Schoderbek, B, et al. Persistence of neuropsychologic deficits in the remitted state of late-life depression. Am J Geriatr Psychiatry 2006; 14: 419–27.
3 Lee, JS, Potter, GG, Wagner, HR, Welsh-Bohmer, KA, Steffens, DC. Persistent mild cognitive impairment in geriatric depression. Int Psychogeriatr 2007; 19: 125–35.
4 Steffens, DC, Byrum, CE, McQuoid, DR, Greenberg, DL, Payne, ME, Blitchington, TF, et al. Hippocampal volume in geriatric depression. Biol Psychiatry 2000; 48: 301–9.
5 O'Brien, JT, Lloyd, A, McKeith, I, Gholkar, A, Ferrier, N. A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. Am J Psychiatry 2004; 161: 2081–90.
6 Hickie, I, Naismith, S, Ward, PB, Turner, K, Scott, E, Mitchell, P, et al. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatry 2005; 186: 197202.
7 Schweitzer, I, Tuckwell, V, Ames, D, O'Brien, J. Structural neuroimaging studies in late-life depression: a review. World J Biol Psychiatry 2001; 2: 83–8.
8 Almeida, OP, Burton, EJ, Ferrier, N, McKeith, IG, O'Brien, JT. Depression with late onset is associated with right frontal lobe atrophy. Psychol Med 2003; 33: 675–81.
9 Lavretsky, H, Kurbanyan, K, Ballmaier, M, Mintz, J, Toga, A, Kumar, A. Sex differences in brain structure in geriatric depression. Am J Geriatr Psychiatry 2004; 12: 653–7.
10 Herrmann, LL, Le Masurier, M, Ebmeier, KP. White matter hyperintensities in late-life depression: a systematic review. J Neurol Neurosurg Psychiatry 2008; 79: 619–24.
11 Simpson, SW, Jackson, A, Baldwin, RC, Burns, A. Subcortical hyperintensities in late-life depression: acute response to treatment and neuropsychological impairment. Int Psychogeriatr 1997; 9: 257–75.
12 Jenkins, M, Malloy, P, Salloway, S, Cohen, R, Rogg, J, Tung, G, et al. Memory processes in depressed geriatric patients with and without subcortical hyperintensities on MRI. J Neuroimaging 1998; 8: 20–6.
13 Kramer-Ginsberg, E, Greenwald, BS, Krishnan, KRR, Christiansen, B, Hu, J, Ashtari, M, et al. Neuropsychological functioning and MRI signal hyperintensities in geriatric depression. Am J Psychiatry 1999; 156: 438–44.
14 Potter, GG, Blackwell, AD, McQuoid, DR, Payne, ME, Steffens, DC, Sahakian, BJ, et al. Prefrontal white matter lesions and prefrontal task impersistence in depressed and nondepressed elders. Neuropsychopharmacology 2007; 32: 2135–42.
15 Sheline, YI, Price, JL, Vaishnavi, SN, Mintun, MA, Barch, DM, Epstein, AA, et al. Regional white matter hyperintensity burden in automated segmentation distinguishes late–life depressed subjects from comparison subjects matched for vascular risk factors. Am J Psychiatry. 2008; 165: 524–32.
16 Sapolsky, RM, Krey, LC, McEwen, BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 1986; 7: 284301.
17 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th edn) (DSM–IV). APA, 1994.
18 Roth, M, Huppert, FA, Mountjoy, CQ, Tym, E. The Cambridge Examination for Mental Disorders of the Elderly – Revised. Cambridge University Press, 1999.
19 Montgomery, SA, Åsberg, M. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–9.
20 Rey, A. Clinical Examination in Psychology. University of Paris, 1964.
21 Lezak, MD, Howieson, DB, Loring, DW. Neuropsychological Assessment (4th edn). Oxford University Press, 2004.
22 Stroop, J. Studies of interference in serial verbal reactions. J Exp Psychol 1935; 18: 643–62.
23 Cegalis, J, Bowlin, J. VIGIL: Software for the Assessment of Attention. Forthought, 1991.
24 Lloyd, AJ, Ferrier, IN, Barber, R, Gholkar, A, Young, AH, O'Brien, JT. Hippocampal volume change in depression: late- and early-onset illness compared. Br J Psychiatry 2004; 184: 488–95.
25 Scheltens, P, Barkhof, F, Leys, D, Pruvo, JP, Nauta, JJ, Vermersch, P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 1993; 114: 712.
26 Simes, RJ. An improved Bonferroni procedure for multiple tests of significance. Biometrika 1986; 73: 751–4.
27 Fernando, MS, Ince, PG. Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci 2004; 226: 13–7.
28 Thomas, AJ, O'Brien, JT, Davis, S, Ballard, C, Barber, R, Kalaria, RN, et al. Ischemic basis for deep white matter hyperintensities in major depression: a neuropathological study. Arch Gen Psychiatry 2002; 59: 785–92.
29 Köhler, S, Thomas, AJ, Barnett, NA, O'Brien, JT. The pattern and course of cognitive impairment in late-life depression. Psychol Med 2009; Aug 6 (Epub ahead of print).
30 Alexopoulos, GS. The vascular depression hypothesis: 10 years later. Biol Psychiatry 2006; 60: 1304–5.
31 Teodorczuk, A, O'Brien, JT, Firbank, MJ, Pantoni, L, Poggesi, A, Erkinjuntti, T, et al. White matter changes and late-life depressive symptoms. Longitudinal study. Br J Psychiatry 2007; 191: 212–7.
32 Godin, O, Dufouil, C, Maillard, P, Delcroix, N, Mazoyer, B, Crivello, F, et al. White matter lesions as a predictor of depression in the elderly: the 3C-Dijon study. Biol Psychiatry 2008; 63: 663–9.
33 Alexopoulos, GS, Murphy, CF, Gunning-Dixon, FM, Latoussakis, V, Kanellopoulos, D, Klimstra, S, et al. Microstructural white matter abnormalities and remission of geriatric depression. Am J Psychiatry 2008; 165: 238–44.
34 Hickie, I, Scott, E, Mitchell, P, Wilhelm, K, Austin, M-P, Bennett, B. Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psychiatry 1995; 37: 151–60.
35 O'Brien, J, Ames, D, Chiu, E, Schweitzer, I, Desmond, P, Tress, B. Severe deep white matter lesions and outcome in elderly patients with major depressive disorder: follow up study. BMJ 1998; 317: 982–4.
36 Baldwin, RC, Walker, S, Simpson, SW, Jackson, A, Burns, A. The prognostic significance of abnormalities seen on magnetic resonance imaging in late-life depression: clinical outcome, mortality and progression to dementia at three years. Int J Geriatr Psychiatry 2000; 15: 1097–104.
37 Sneed, JR, Roose, SP, Sackeim, HA. Vascular depression: a distinct diagnostic subtype? Biol Psychiatry 2006; 60: 1295–8.
38 Sneed, JR, Rindskopf, D, Steffens, DC, Krishnan, KRR, Roose, SP. The vascular depression subtype: evidence of internal validity. Biol Psychiatry 2008; 64: 491–7.
39 Lupien, SJ, de Leon, M, de Santi, S, Convit, A, Tarshish, C, Nair, NPV, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998; 1: 6973.
40 Ballmaier, M, Narr, KL, Toga, AW, Elderkin-Thompson, V, Thompson, PM, Hamilton, L, et al. Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. Am J Psychiatry 2008; 165: 229–37.
41 Sheline, YI, Sanghavi, M, Mintun, MA, Gado, MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 1999; 19: 5034–43.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The British Journal of Psychiatry
  • ISSN: 0007-1250
  • EISSN: 1472-1465
  • URL: /core/journals/the-british-journal-of-psychiatry
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression

  • Sebastian Köhler (a1), Alan J. Thomas (a2), Adrian Lloyd (a3), Robert Barber (a2), Osvaldo P. Almeida (a4) and John T. O'Brien (a2)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *