Skip to main content Accessibility help
×
Home

Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis

  • Joost Janssen (a1), Yasser Alemán-Goméz (a2), Santiago Reig (a2), Hugo G. Schnack (a3), Mara Parellada (a4), Montserrat Graell (a5), Carmen Moreno (a4), Dolores Moreno (a4), J. M. Mateos-Pérez (a6), J. M. Udias (a7), Celso Arango (a4) and Manuel Desco (a2)...

Abstract

Background

Thalamic volume deficits are associated with psychosis but it is unclear whether the volume reduction is uniformly distributed or whether it is more severe in particular thalamic regions.

Aims

To quantify whole and regional thalamic volume in males with early-onset psychosis and healthy male controls.

Method

Brain scans were obtained for 80 adolescents: 46 individuals with early-onset psychosis with a duration of positive symptoms less than 6 months and 34 healthy controls. All participants were younger than 19 years. Total thalamic volumes were assessed using FreeSurfer and FSL-FIRST, group comparisons of regional thalamic volumes were studied with a surface-based approach.

Results

Total thalamic volume was smaller in participants with early-onset psychosis relative to controls. Regional thalamic volume reduction was most significant in the right anterior mediodorsal area and pulvinar.

Conclusions

In males with minimally treated early-onset psychosis, thalamic volume deficits may be most pronounced in the anterior mediodorsal and posterior pulvinar regions, adding strength to findings from post-mortem studies in adults with psychosis.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis
      Available formats
      ×

Copyright

Corresponding author

Joost Janssen, PhD, Hospital General Universitario Gregorio Marañón, Departments of Experimental Medicine, Surgery, and Psychiatry (Adolescent Unit) and CIBERSAM. C/Dr. Esquerdo, 46, 28007 Madrid, Spain. Email: jjanssen@mce.hggm.es

Footnotes

Hide All

Declaration of interest

None.

Footnotes

References

Hide All
1 Adriano, F, Spoletini, I, Caltagirone, C, Spalletta, G. Updated meta-analyses reveal thalamus volume reduction in patients with first-episode and chronic schizophrenia. Schizophr Res 2010; 123: 114.
2 Byne, W, Hazlett, EA, Buchsbaum, MS, Kemether, E. The thalamus and schizophrenia: current status of research. Acta Neuropathol 2009; 117: 347–68.
3 Jones, EG. Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 1997; 23: 483501.
4 Gur, RE, Maany, V, Mozley, PD, Swanson, C, Bilker, W, Gur, RC. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 1998; 155: 1711–7.
5 Frazier, JA, Hodge, SM, Breeze, JL, Giuliano, AJ, Terry, JE, Moore, CM, et al. Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 2008; 34: 3746.
6 Janssen, J, Reig, S, Parellada, M, Moreno, D, Graell, M, Fraguas, D, et al. Regional gray matter volume deficits in adolescents with first-episode psychosis. J Am Acad Child Adolesc Psychiatry 2008; 47: 1311–20.
7 Frazier, JA, Chiu, S, Breeze, JL, Makris, N, Lange, N, Kennedy, DN, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 2005; 162: 1256–65.
8 Kumra, S, Giedd, JN, Vaituzis, AC, Jacobsen, LK, McKenna, K, Bedwell, J, et al. Childhood-onset psychotic disorders: magnetic resonance imaging of volumetric differences in brain structure. Am J Psychiatry 2000; 157: 1467–74.
9 Dasari, M, Friedman, L, Jesberger, J, Stuve, TA, Findling, RL, Swales, TP, et al. A magnetic resonance imaging study of thalamic area in adolescent patients with either schizophrenia or bipolar disorder as compared to healthy controls. Psychiatry Res 1999; 91: 155–62.
10 Terry, J, Lopez-Larson, M, Frazier, JA. Magnetic resonance imaging studies in early onset bipolar disorder: an updated review. Child Adolesc Psychiatr Clin N Am 2009; 18: 421–39, ix–x.
11 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder (4th edn) (DSM-IV). APA, 1994.
12 Wechsler, D. Wecshler Adult Intelligence Scale (3rd edn). The Psychological Corporation, 1997.
13 Wechsler, D. Manual for the Wechsler Intelligence Scale for Children—Revised. Psychological Corporation, 1974.
14 Kaufman, J, Birmaher, B, Brent, D, Rao, U, Flynn, C, Moreci, P, et al. Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–8.
15 Castro-Fornieles, J, Parellada, M, Gonzalez-Pinto, A, Moreno, D, Graell, M, Baeza, I, et al. The child and adolescent first-episode psychosis study (CAFEPS): design and baseline results. Schizophr Res 2007; 91: 226–37.
16 Kay, SR, Fiszbein, A, Opler, LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–76.
17 Bartko, JJ. Measures of agreement: a single procedure. Stat Med 1994; 13: 737–45.
18 Fraguas, D, de Castro, MJ, Medina, O, Parellada, M, Moreno, D, Graell, M, et al. Does diagnostic classification of early-onset psychosis change over follow-up? Child Psychiatry Hum Dev 2008; 39: 137–45.
19 Hollingshead, A, Redlich, F. Social Class and Mental Illness: A Community Study. John Wiley, 1958.
20 Woods, SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 2003; 64: 663–7.
21 Smith, SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–55.
22 Desco, M, Pascau, J, Reig, S, Gispert, JD, Santos, A, Benito, B, et al. Multimodality image quantification using Talairach grid. Proc SPIE Medical Imaging 2001; 4322: 1386–92.
23 Fischl, B, Salat, DH, Busa, E, Albert, M, Dieterich, M, Haselgrove, C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341–55.
24 Patenaude, B, Smith, SM, Kennedy, DN, Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011; 56: 907–22.
25 Brechbuhler, C, Gerig, G, Kubler, O. Parametrization of closed surfaces for 3-D shape description. Comput Vis, Graphics, Image Process 1995; 61: 154–70.
26 Styner, M, Oguz, I, Xu, S, Brechbuehler, C, Pantazis, D, Levitt, JJ, et al. Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J 2006: 1071; 242–50
27 Gerardin, E, Chetelat, G, Chupin, M, Cuingnet, R, Desgranges, B, Kim, HS, et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neuroimage 2009; 47: 1476–86.
28 Ho, BC, Magnotta, V. Hippocampal volume deficits and shape deformities in young biological relatives of schizophrenia probands. Neuroimage 2010; 49: 3385–93.
29 Levitt, JJ, Styner, M, Niethammer, M, Bouix, S, Koo, MS, Voglmaier, MM, et al. Shape abnormalities of caudate nucleus in schizotypal personality disorder. Schizophr Res 2009; 110: 127–39.
30 Zhao, Z, Taylor, WD, Styner, M, Steffens, DC, Krishnan, KR, MacFall, JR. Hippocampus shape analysis and late-life depression. PLoS One 2008; 3: e1837.
31 Bookstein, F. Shape and the information in medical images: a decade of the morphometric synthesis. Comput Vis Image Underst 1997; 66: 97118.
32 Looi, JC, Walterfang, M, Styner, M, Svensson, L, Lindberg, O, Ostberg, P, et al. Shape analysis of the neostriatum in frontotemporal lobar degeneration, Alzheimer's disease, and controls. Neuroimage 2010; 51: 970–86.
33 Paniagua, B, Styner, M, Macenko, M, Pantazis, D, Niethammer, M. Local shape analysis using MANCOVA. Insight J 2009; Jul–Dec: 694.
34 Walterfang, M, Looi, JC, Styner, M, Walker, RH, Danek, A, Niethammer, M, et al. Shape alterations in the striatum in chorea-acanthocytosis. Psychiatry Res 2011; 192: 2936.
35 Genovese, CR, Lazar, NA, Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15: 870–8.
36 Ellison-Wright, I, Bullmore, E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res 2010; 117: 112.
37 Chang, K, Karchemskiy, A, Barnea-Goraly, N, Garrett, A, Simeonova, DI, Reiss, A. Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry 2005; 44: 565–73.
38 Dazzan, P, Morgan, KD, Orr, K, Hutchinson, G, Chitnis, X, Suckling, J, et al. Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacology 2005; 30: 765–74.
39 Crow, TJ. The ‘big bang’ theory of the origin of psychosis and the faculty of language. Schizophr Res 2008; 102: 3152.
40 Flaum, M, Swayze, VW 2nd, O'Leary, DS, Yuh, WT, Ehrhardt, JC, Arndt, SV, et al. Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. Am J Psychiatry 1995; 152: 704–14.
41 Coscia, DM, Narr, KL, Robinson, DG, Hamilton, LS, Sevy, S, Burdick, KE, et al. Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Hum Brain Mapp 2009; 30: 1236–45.
42 Harms, MP, Wang, L, Mamah, D, Barch, DM, Thompson, PA, Csernansky, JG. Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 2007; 27: 13835–42.
43 Behrens, TE, Johansen-Berg, H, Woolrich, MW, Smith, SM, Wheeler-Kingshott, CA, Boulby, PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003; 6: 750–7.
44 Romanski, LM, Giguere, M, Bates, JF, Goldman-Rakic, PS. Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 1997; 379: 313–32.
45 Douaud, G, Smith, S, Jenkinson, M, Behrens, T, Johansen-Berg, H, Vickers, J, et al. Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 2007; 130: 2375–86.
46 Garcia-Cabezas, MA, Rico, B, Sanchez-Gonzalez, MA, Cavada, C. Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 2007; 34: 965–84.
47 Alelu-Paz, R, Gimenez-Amaya, JM. The mediodorsal thalamic nucleus and schizophrenia. J Psychiatry Neurosci 2008; 33: 489–98.
48 Ettinger, U, Picchioni, M, Landau, S, Matsumoto, K, van Haren, NE, Marshall, N, et al. Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia. Arch Gen Psychiatry 2007; 64: 401–9.
49 James, AC, James, S, Smith, DM, Javaloyes, A. Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 2004; 161: 1023–9.
50 Rapoport, JL, Giedd, J, Kumra, S, Jacobsen, L, Smith, A, Lee, P, et al. Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry 1997; 54: 897903.
51 Wright, IC, Rabe-Hesketh, S, Woodruff, PW, David, AS, Murray, RM, Bullmore, ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 1625.
52 Konick, LC, Friedman, L. Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 2001; 49: 2838.
Type Description Title
PDF
Supplementary materials

Janssen et al. supplementary material
Supplementary Material

 PDF (645 KB)
645 KB

Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis

  • Joost Janssen (a1), Yasser Alemán-Goméz (a2), Santiago Reig (a2), Hugo G. Schnack (a3), Mara Parellada (a4), Montserrat Graell (a5), Carmen Moreno (a4), Dolores Moreno (a4), J. M. Mateos-Pérez (a6), J. M. Udias (a7), Celso Arango (a4) and Manuel Desco (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Regional specificity of thalamic volume deficits in male adolescents with early-onset psychosis

  • Joost Janssen (a1), Yasser Alemán-Goméz (a2), Santiago Reig (a2), Hugo G. Schnack (a3), Mara Parellada (a4), Montserrat Graell (a5), Carmen Moreno (a4), Dolores Moreno (a4), J. M. Mateos-Pérez (a6), J. M. Udias (a7), Celso Arango (a4) and Manuel Desco (a2)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *