Skip to main content Accessibility help
×
Home

Low prevalence of substance use in people with 22q11.2 deletion syndrome

  • Claudia Vingerhoets (a1), Mathilde J.F. van Oudenaren (a2), Oswald J.N. Bloemen (a3), Erik Boot (a4), Esther D.A. van Duin (a5), Laurens J.M. Evers (a6), Ania M. Fiksinski (a7), Elemi J. Breetvelt (a8), Lisa D. Palmer (a9), Elfi Vergaelen (a10), Annick Vogels (a11), Carin Meijer (a12), Jan Booij (a13), Genetic Risk and Outcome of Psychosis (GROUP) investigators (a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8) (a9) (a10) (a11) (a12) (a13) (a14) (a15) (a16) (a17) (a18), Liewe de Haan (a14), Ann Swillen (a15), Jacob A.S. Vorstman (a16), Anne S. Bassett (a17) and Therese A.M.J. van Amelsvoort (a18)...

Abstract

Background

22q11.2 deletion syndrome (22q11DS), one of the most common recurrent copy number variant disorders, is associated with dopaminergic abnormalities and increased risk for psychotic disorders.

Aims

Given the elevated prevalence of substance use and dopaminergic abnormalities in non-deleted patients with psychosis, we investigated the prevalence of substance use in 22q11DS, compared with that in non-deleted patients with psychosis and matched healthy controls.

Method

This cross-sectional study involved 434 patients with 22q11DS, 265 non-deleted patients with psychosis and 134 healthy controls. Psychiatric diagnosis, full-scale IQ and COMT Val158Met genotype were determined in the 22q11DS group. Substance use data were collected according to the Composite International Diagnostic Interview.

Results

The prevalence of total substance use (36.9%) and substance use disorders (1.2%), and weekly amounts of alcohol and nicotine use, in patients with 22q11DS was significantly lower than in non-deleted patients with psychosis or controls. Compared with patients with 22q11DS, healthy controls were 20 times more likely to use substances in general (P < 0.001); results were also significant for alcohol and nicotine use separately. Within the 22q11DS group, there was no relationship between the prevalence of substance use and psychosis or COMT genotype. Male patients with 22q11DS were more likely to use substances than female patients with 22q11DS.

Conclusions

The results suggest that patients with 22q11DS are at decreased risk for substance use and substance use disorders despite the increased risk of psychotic disorders. Further research into neurobiological and environmental factors involved in substance use in 22q11DS is necessary to elucidate the mechanisms involved.

Declaration of interest

None.

Copyright

Corresponding author

Correspondence: Claudia Vingerhoets, Department of Psychiatry and Psychology, Maastricht University, Vijverdalseweg 1, 6226 NB Maastricht, the Netherlands. Email: claudia.vingerhoets@maastrichtuniversity.nl

References

Hide All
1Schneider, M, Debbané, M, Bassett, AS, Chow, EWC, Fung, WLA, van den Bree, M, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry 2014; 171(6): 627–39.
2Bassett, AS, Chow, EWC, AbdelMalik, P, Gheorghiu, M, Husted, J, Weksberg, R. The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatry 2003; 160(9): 1580–6.
3Murphy, KC, Jones, LA, Owen, MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56(10): 940–5.
4Boot, E, Booij, J, Zinkstok, J, Abeling, N, de Haan, L, Baas, F, et al. Disrupted dopaminergic neurotransmission in 22q11 deletion syndrome. Neuropsychopharmacology 2008; 33(6): 1252–8.
5Gothelf, D, Law, AJ, Frisch, A, Chen, J, Zarchi, O, Michaelovsky, E, et al. Biological effects of COMT haplotypes and psychosis risk in 22q11.2 deletion syndrome. Biol Psychiatry 2014; 75(5): 406–13.
6Barnes, TRE, Mutsatsa, SH, Hutton, SB, Watt, HC, Joyce, EM. Comorbid substance use and age at onset of schizophrenia. Br J Psychiatry 2006; 188(3): 237–42.
7Young, SE, Corley, RP, Stallings, MC, Rhee, SH, Crowley, TJ, Hewitt, JK. Substance use, abuse and dependence in adolescence: prevalence, symptom profiles and correlates. Drug Alcohol Depend 2002; 68(3): 309–22.
8Chambers, RA, Krystal, JH, Self, DW. A neurobiological basis for substance abuse comorbidity in schizophrenia. Biol Psychiatry 2001; 50(2): 7183.
9Volkow, ND. Substance use disorders in schizophrenia--clinical implications of comorbidity. Schizophr Bull 2009; 35(3): 469–72.
10Korver, N, Quee, PJ, Boos, HBM, Simons, CJP, de Haan, L. Genetic Risk and Outcome of Psychosis (GROUP), a multi-site longitudinal cohort study focused on gene-environment interaction: objectives, sample characteristics, recruitment and assessment methods. Int J Methods Psychiatr Res 2012; 21(3): 205–21.
11First, MB, Gibbon, M. The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). John Wiley & Sons Inc, 2004.
12Kaufman, J, Birmaher, B, Brent, D, Rao, U, Flynn, C, Moreci, P, et al. Schedule for affective disorders and schizophrenia for school-age children - present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980–8.
13Sheenan, D, Lecrubier, Y, Sheenan, K, Amorim, P, Janavs, J, Weiler, E. The MINI-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59: 2233.
14Prosser, H, Moss, S, Costello, H, Simpson, N, Patel, P, Rowe, S. Reliability and validity of the Mini PAS-ADD for assessing psychiatric disorders in adults with intellectual disability. J Intellect Disabil Res 1998; 42: 264–72.
15Andreasen, NC. The comprehensive assessment of symptoms and history (CASH). Arch Gen Psychiatry 1992; 49: 615.
16Robins, LN. The Composite International Diagnostic Interview. Arch Gen Psychiatry 1988; 45(12): 1069.
17Wechseler, D. WAIS-III: Wechsler Adult Intelligence Scale, third ed. Administration and Scoring Manual. Psychological Corporation, 1997.
18Wechseler, D. Manual for the Wechsler Intelligence Scale for Children-(WISC-III). Psychological Corporation, 1991.
19Velthorst, E, Levine, SZ, Henquet, C, de Haan, L, van Os, J, Myin-Germeys, I, et al. To cut a short test even shorter: reliability and validity of a brief assessment of intellectual ability in schizophrenia – a control-case family study. Cogn Neuropsychiatry 2013; 18: 574–93.
20Bassett, AS, Caluseriu, O, Weksberg, R, Young, DA, Chow, EWC. Catechol-O-methyl transferase and expression of schizophrenia in 73 adults with 22q11 deletion syndrome. Biol Psychiatry 2007; 61(10): 1135–40.
21Vorstman, JAS, Turetsky, BI, Sijmens-Morcus, MEJ, de Sain, MG, Dorland, B, Sprong, M, et al. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele. Neuropsychopharmacology 2009; 34(3): 739–46.
22van Duin, EDA, Goossens, L, Hernaus, D, da Silva Alves, F, Schmitz, N, Schruers, K, et al. Neural correlates of reward processing in adults with 22q11 deletion syndrome. J Neurodev Disord 2016; 8: 25.
23Angkustsiri, K, Leckliter, I, Tartaglia, N, Beaton, EA, Enriquez, J, Simon, TJ. An examination of the relationship of anxiety and intelligence to adaptive functioning in children with chromosome 22q11.2 deletion syndrome. J Dev Behav Pediatr 2012; 33(9): 713–20.
24Roberti, JW. A review of behavioral and biological correlates of sensation seeking. J Res Pers 2004; 38(3): 256–79.
25Harden, KP, Quinn, PD, Tucker-Drob, EM. Genetically influenced change in sensation seeking drives the rise of delinquent behavior during adolescence. Dev Sci 2012; 15(1): 150–63.
26Compton, WM, Conway, KP, Stinson, FS, Colliver, JD, Grant, BF. Prevalence, correlates, and comorbidity of DSM-IV antisocial personality syndromes and alcohol and specific drug use disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. J Clin Psychiatry 2005; 66(6): 677–85.
27Raina, P, Lunsky, Y. A comparison study of adults with intellectual disability and psychiatric disorder with and without forensic involvement. Res Dev Disabil 2010; 31(1): 218–23.
28Berridge, KC, Robinson, TE. Parsing reward. Trends Neurosci 2003; 26(9): 507–13.
29van Hell, H, Vink, M, Ossewaarde, L, Jager, G, Kahn, R, Ramsey, N. Chronic effects of cannabis use on the human reward system: an fMRI study. Eur Neuropsychopharmacol 2010; 20(3): 153–63.
30Martz, ME, Trucco, EM, Cope, LM, Hardee, JE, Jester, JM, Zucker, RA, et al. Association of marijuana use with blunted nucleus accumbens response to reward anticipation. JAMA Psychiatry 2016; 73(8): 838.
31Wrase, J, Schlagenhauf, F, Kienast, T, Wüstenberg, T, Bermpohl, F, Kahnt, T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 2007; 35(2): 787–94.
32Esslinger, C, Englisch, S, Inta, D, Rausch, F, Schirmbeck, F, Mier, D, et al. Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophr Res 2012; 140(1): 114–21.
33Strauss, GP, Waltz, JA, Gold, JM. A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull 2014; 40(Suppl 2): S107–16.
34Dubourg, L, Schneider, M, Padula, M, Eliez, S. Reward Processes, White Matter Pathways of the Reward System and Negative Symptoms in 22q11DS. Organization for Human Brain Mapping, 2016.
35Chapman SL, C, Wu, L-T. Substance abuse among individuals with intellectual disabilities. Res Dev Disabil 2012; 33(4): 1147–56.
36Swerts, C, Vandevelde, S, VanDerNagel, JEL, Vanderplasschen, W, Claes, C, De Maeyer, J. Substance use among individuals with intellectual disabilities living independently in Flanders. Res Dev Disabil 2017; 63: 107–17.
37van Duijvenbode, N, VanDerNagel, JEL, Didden, R, Engels, RCME, Buitelaar, JK, Kiewik, M, et al. Substance use disorders in individuals with mild to borderline intellectual disability: current status and future directions. Res Dev Disabil 2015; 38: 319–28.
38Chaplin, E, Gilvarry, C, Tsakanikos, E. Recreational substance use patterns and co-morbid psychopathology in adults with intellectual disability. Res Dev Disabil 2011; 32(6): 2981–6.

Keywords

Type Description Title
WORD
Supplementary materials

Vingerhoets et al. supplementary material
Tables S1-S4

 Word (103 KB)
103 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Low prevalence of substance use in people with 22q11.2 deletion syndrome

  • Claudia Vingerhoets (a1), Mathilde J.F. van Oudenaren (a2), Oswald J.N. Bloemen (a3), Erik Boot (a4), Esther D.A. van Duin (a5), Laurens J.M. Evers (a6), Ania M. Fiksinski (a7), Elemi J. Breetvelt (a8), Lisa D. Palmer (a9), Elfi Vergaelen (a10), Annick Vogels (a11), Carin Meijer (a12), Jan Booij (a13), Genetic Risk and Outcome of Psychosis (GROUP) investigators (a1) (a2) (a3) (a4) (a5) (a6) (a7) (a8) (a9) (a10) (a11) (a12) (a13) (a14) (a15) (a16) (a17) (a18), Liewe de Haan (a14), Ann Swillen (a15), Jacob A.S. Vorstman (a16), Anne S. Bassett (a17) and Therese A.M.J. van Amelsvoort (a18)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *