Skip to main content Accessibility help
×
Home

Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia

  • Michael Bodnar (a1), Amelie M. Achim (a2), Ashok K. Malla (a3), Ridha Joober (a4), Audrey Benoit (a5) and Martin Lepage (a6)...

Abstract

Background

Previous studies in schizophrenia have shown a strong relationship between memory deficits and a poor clinical outcome. However, no previous study has identified the functional neural correlates of memory encoding in relation to remission.

Aims

To determine whether functional magnetic resonance imaging (fMRI) activation patterns differed between individuals that later achieved remission v. those who did not.

Method

Forty-two participants with first-episode schizophrenia were divided into two groups after 1 year of treatment as per the 2005 remission in schizophrenia consensus definition. We then examined fMRI activation using three contrasts (associative v. item-oriented strategy, semantically unrelated v. related image pairs, and successful v. unsuccessful memory encoding) among 15 participants who had achieved remission (remitted group), 27 who had not (non-remitted group) and 31 healthy controls (control group).

Results

Participants in the non-remitted group displayed a positive activation in the posterior cingulate compared with those in the remitted group when encoding related images; no significant differences between the two groups were identified for the other contrasts. From the behavioural data, compared with the remitted and control groups, the non-remitted group demonstrated an inability to encode related images and displayed worse recognition memory overall.

Conclusions

This is the first study to identify differential neural activation between individuals with first-episode schizophrenia that later achieved remission v. those who did not. The behavioural and functional results together add to the growing evidence relating a poor clinical outcome in schizophrenia to memory-related deficits.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia
      Available formats
      ×

Copyright

Corresponding author

Martin Lepage, PhD, Douglas Mental Health University Institute, Frank B Common Pavilion, 6875 LaSalle Blvd, Verdun, Quebec H4H 1R3, Canada. Email: martin.lepage@mcgill.ca

Footnotes

Hide All

See editorial, pp. 270–272, this issue.

Declaration of interest

M.L. reports having received honorariums for educational events from Janssen-Ortho and Lilly. A.K.M. reports having received financial assistance/compensation for research and educational activities from Pfizer, Janssen-Ortho, AstraZeneca and Bristol-Myers Squibb. R.J. reports having received consultancy honorarium from Pfizer and Janssen-Ortho.

Footnotes

References

Hide All
1 Cirillo, MA, Seidman, LJ. Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms. Neuropsychol Rev 2003; 13: 4377.
2 Ragland, JD, Laird, AR, Ranganath, C, Blumenfeld, RS, Gonzales, SM, Glahn, DC. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry 2009; 166: 863–74.
3 Achim, AM, Lepage, M. Episodic memory-related activation in schizophrenia: meta-analysis. Br J Psychiatry 2005; 187: 500–9.
4 Green, MF. What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 1996; 153: 321–30.
5 Bodnar, M, Harvey, P-O, Malla, A, Joober, R, Lepage, M. The parahippocampal gyrus as a neural marker of early remission in first episode psychosis: a voxel-based morphometry study. Clin Schizophr Relat Psychoses 2011; 4: 217–28.
6 Bodnar, M, Malla, A, Joober, R, Lepage, M. Cognitive markers of short-term clinical outcome in first-episode psychosis. Br J Psychiatry 2008; 193: 297304.
7 Helldin, L, Kane, JM, Karilampi, U, Norlander, T, Archer, T. Remission and cognitive ability in a cohort of patients with schizophrenia. J Psychiatr Res 2006; 40: 738–45.
8 Toulopoulou, T, Murray, RM. Verbal memory deficit in patients with schizophrenia: an important future target for treatment. Expert Rev Neurother 2004; 4: 4352.
9 McGuire, P, Howes, OD, Stone, J, Fusar-Poli, P. Functional neuroimaging in schizophrenia: diagnosis and drug discovery. Trends Pharmacol Sci 2008; 29: 91–8.
10 Saykin, AJ, Gur, RC, Gur, RE, Mozley, PD, Mozley, LH, Resnick, SM, et al. Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry 1991; 48: 618–24.
11 Hyman, SE, Fenton, WS. Medicine. What are the right targets for psychopharmacology? Science 2003; 299: 350–1.
12 Ranganath, C, Minzenberg, MJ, Ragland, JD. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol Psychiatry 2008; 64: 1825.
13 Andreasen, NC, Carpenter, WT Jr, Kane, JM, Lasser, RA, Marder, SR, Weinberger, DR. Remission in schizophrenia: proposed criteria and rationale for consensus. Am J Psychiatry 2005; 162: 441–9.
14 Achim, AM, Bertrand, MC, Montoya, A, Malla, AK, Lepage, M. Medial temporal lobe activations during associative memory encoding for arbitrary and semantically related object pairs. Brain Res 2007; 1161: 4655.
15 Achim, AM, Bertrand, MC, Sutton, H, Montoya, A, Czechowska, Y, Malla, AK, et al. Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Arch Gen Psychiatry 2007; 64: 9991014.
16 Bodnar, M, Malla, AK, Czechowska, Y, Benoit, A, Fathalli, F, Joober, R, et al. Neural markers of remission in first-episode schizophrenia: a volumetric neuroimaging study of the hippocampus and amygdala. Schizophr Res 2010; 122: 7280.
17 Malla, A, Norman, R, McLean, T, Scholten, D, Townsend, L. A Canadian programme for early intervention in non-affective psychotic disorders. Aust N Z J Psychiatry 2003; 37: 407–13.
18 Kay, S, Fiszbein, A, Opler, L. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–76.
19 First, MB, Spitzer, RL, Gibbon, M, Williams, JBW. Structured Clinical Interview for DSM-IV Axis I Disorders, Patient Edition (SCID-I/P & SCID-I/NP), Version 2. New York Psychiatric Institute, Biometrics Research, 1998.
20 Slotnick, SD, Moo, LR, Segal, JB, Hart, J. Jr Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Brain Res Cogn Brain Res 2003; 17: 7582.
21 Slotnick, SD, Schacter, DL. A sensory signature that distinguishes true from false memories. Nat Neurosci 2004; 7: 664–72.
22 Forman, SD, Cohen, JD, Fitzgerald, M, Eddy, WF, Mintun, MA, Noll, DC. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 1995; 33: 636–47.
23 Petersson, KM, Nichols, TE, Poline, JB, Holmes, AP. Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference. Philos Trans R Soc Lond B Biol Sci 1999; 354: 1261–81.
24 Snodgrass, JG, Corwin, J. Pragmatics of measuring recognition memory: applications to dementia and amnesia. J Exp Psychol Gen 1988; 117: 3450.
25 Wechsler, D. Wechsler Adult Intelligence Scale (3rd edn). The Psychological Corporation, 1997.
26 Wang, K, Cheung, EF, Gong, QY, Chan, RC. Semantic processing disturbance in patients with schizophrenia: a meta-analysis of the n400 component. PLoS One 2011; 6: e25435.
27 Doughty, OJ, Done, DJ. Is semantic memory impaired in schizophrenia? A systematic review and meta–analysis of 91 studies. Cogn Neuropsychiatry 2009; 14: 473509.
28 Binder, JR, Desai, RH, Graves, WW, Conant, LL. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 2009; 19: 2767–96.
29 Whitfield-Gabrieli, S, Thermenos, HW, Milanovic, S, Tsuang, MT, Faraone, SV, McCarley, RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci USA 2009; 106: 1279–84.
30 Meda, SA, Stevens, MC, Folley, BS, Calhoun, VD, Pearlson, GD. Evidence for anomalous network connectivity during working memory encoding in schizophrenia: an ICA based analysis. PLoS One 2009; 4: e7911.
31 Garrity, AG, Pearlson, GD, McKiernan, K, Lloyd, D, Kiehl, KA, Calhoun, VD. Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 2007; 164: 450–7.
32 Broyd, SJ, Demanuele, C, Debener, S, Helps, SK, James, CJ, Sonuga-Barke, EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009; 33: 279–96.
33 Wang, L, Laviolette, P, O'Keefe, K, Putcha, D, Bakkour, A, Van Dijk, KR, et al. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage 2010; 51: 910–7.
34 Ramsey, NF, Jansma, JM, Jager, G, Van Raalten, T, Kahn, RS. Neurophysiological factors in human information processing capacity. Brain 2004; 127: 517–25.
35 Honey, G, Bullmore, E. Human pharmacological MRI. Trends Pharmacol Sci 2004; 25: 366–74.
36 Stein, EA. fMRI: a new tool for the in vivo localization of drug actions in the brain. J Anal Toxicol 2001; 25: 419–24.
37 Newell, KA, Zavitsanou, K, Huang, XF. Ionotropic glutamate receptor binding in the posterior cingulate cortex in schizophrenia patients. Neuroreport 2005; 16: 1363–7.
38 Newell, KA, Zavitsanou, K, Jew, SK, Huang, XF. Alterations of muscarinic and GABA receptor binding in the posterior cingulate cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 225–33.
39 Abbott, C, Juarez, M, White, T, Gollub, RL, Pearlson, GD, Bustillo, J, et al. Antipsychotic dose and diminished neural modulation: a multi-site fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 473–82.
40 Ettinger, U, Williams, SC, Fannon, D, Premkumar, P, Kuipers, E, Moller, HJ, et al. Functional magnetic resonance imaging of a parametric working memory task in schizophrenia: relationship with performance and effects of antipsychotic treatment. Psychopharmacology (Berl) 2011; 216: 1727.
Type Description Title
PDF
Supplementary materials

Bodnar et al. supplementary material
Supplementary Material

 PDF (172 KB)
172 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Functional magnetic resonance imaging correlates of memory encoding in relation to achieving remission in first-episode schizophrenia

  • Michael Bodnar (a1), Amelie M. Achim (a2), Ashok K. Malla (a3), Ridha Joober (a4), Audrey Benoit (a5) and Martin Lepage (a6)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *