Skip to main content Accessibility help
×
Home

Foetal origins of schizophrenia: Testable hypotheses of genetic and environmental influences

  • Kathryn M. Abel (a1)

Extract

Although four-fifths of the variance in schizophrenia is attributable to genes, the locus of genetic defect remains elusive. Moreover, genetic investigation provides little detail, beyond suggesting that the contribution of genes is complex, probably polygenic and unlikely to be sufficient in most cases to allow expression of the syndrome (Vincente & Kennedy, 1997). Some apparently genetic effects also need explanation in a more complex model. Population studies show that schizophrenia is more likely to be inherited from an affected mother than from an affected father (Byrne et al, 2002), and increasing paternal age confers increased risk (Malaspina et al, 2001). Other effects are difficult to explain in conventional genetic terms: season of birth, urbanicity and migration are consistently reported to affect rates of schizophrenia in adulthood (Mortensen et al, 1999; Cantor-Graae et al, 2003), as is prenatal exposure to famine (Susser & Lin, 1992). Hypotheses of schizophrenia must be able to account for this interplay of genetic and environmental risk factors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Foetal origins of schizophrenia: Testable hypotheses of genetic and environmental influences
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Foetal origins of schizophrenia: Testable hypotheses of genetic and environmental influences
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Foetal origins of schizophrenia: Testable hypotheses of genetic and environmental influences
      Available formats
      ×

Copyright

References

Hide All
Byrne, M., Agerbo, E. & Mortensen, P. B. (2002) Family history of psychiatric disorders and age at first contact in schizophrenia: an epidemiological study. British Journal of Psychiatry, 181, s19s25.
Cantor-Graae, E., Pedersen, C. B., McNeil, T. F., et al (2003) Migration as a risk factor for schizophrenia: a Danish population-based cohort study. British Journal of Psychiatry, 182, 117122.
Constancia, M., Hemberger, M., Hughes, J., et al (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945948.
Davies, W., Isles, A. R. & Wilkinson, L. S. (2001) Imprinted genes and mental dysfunction. Trends in Molecular Medicine, 33, 428435.
Edwards, A., Megens, A., Peek, M., et al (2000) Sexual origins of placental dysfunction. Lancet, 355, 203204.
Gunnell, D., Rasmussen, F., Fouskakis, D., et al (2003) Patterns of fetal and childhood growth and the development of psychosis in young males: a cohort study. American Journal of Epidemiology, 158, 29300.
Harrison, P. J. (1999) The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain, 122, 593624.
Hattersley, A. T. & Tooke, J. E. (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birth weight with diabetes and vascular disease. Lancet, 353, 789792.
Jablensky, A. & Lawrence, D. (2001) Schizophrenia and cancer: is there a need to invoke a protective gene? Archives of General Psychiatry, 58, 579580.
Jenkinson, C. M. C., Peterson, S. W., Mackenzie, D. D. S., et al (1995) Seasonal effects on birth weight in sheep are associated with changes in placental development. New Zealand Journal of Agricultural Research, 38, 337345.
Killian, J. K., Nolan, C. M., Stewart, N., et al (2001) Monotreme IGF2 expression and ancestral origin of genomic imprinting. Journal of Experimental Zoology, 291, 205212.
Kruuk, L. E. B., Clutton-Brock, T. H., Albon, S. D., et al (1999) Population density affects sex ratiovariation in red deer. Nature, 399, 459461.
Lefebvre, L., Viville, S., Barton, S. C., et al (1998) Abnormal behaviour and growth retardation associated with loss of the imprinted gene, Mest. Nature Genetics 20, 163169.
Malaspina, D., Harlap, S., Fennig, S., et al (2001) Advancing paternal age and the risk of schizophrenia. Archives of General Psychiatry, 58, 361367.
Moore, T. & Haig, D. (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends in Genetics, 7, 4549.
Mortensen, P. B., Pedersen, C. B., Westergaard, T., et al (1999) Effects of family history and place and season of birth on the risk of schizophrenia. New England Journal of Medicine, 340, 603608.
Ozanne, S. E. & Hales, C. N. (1999) The long-term consequences of intra-uterine protein malnutrition for glucose metabolism. Proceedings of the Nutritionist Society, 58, 615619.
Reik, W., Constancia, M. & Fowden, A. (2003) Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. Journal of Physiology, 534, 3544.
Ryan, M. C. M., Collins, P. & Thakore, J. H. (2003) Impaired glucose fasting tolerance in first-episode drug-naïve patients with schizophrenia. American Journal of Psychiatry, 160, 284289.
Smith, G. C. S., Stenhouse, E. J., Crossley, J. A., et al (2002) Early-pregnancy origins of low birth weight. Nature, 417, 916917.
Susser, E. & Lin, S. P. (1992) Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Archives of General Psychiatry, 49, 983988.
Vincent, J. B., Paterson, A. D., Strong, E., et al (2000) The unstable trinucleotide repeat story of major psychosis. American Journal of Medical Genetics, 97, 7797.
Vincente, A. & Kennedy, J. L. (1997) The genetics of neurodevelopment and schizophrenia. In Neurodevelopment and Adult Psychopathology (eds Keshavan, M. S. & Murray, R. M.), pp. 3157. Cambridge: Cambridge University Press.
Wahlbeck, K., Forsen, T., Osmond, C., et al (2001) Association of schizophrenia with low maternal body mass index, small size at birth and thinness during childhood. Archives of General Psychiatry, 58, 4852.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Foetal origins of schizophrenia: Testable hypotheses of genetic and environmental influences

  • Kathryn M. Abel (a1)
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *