Skip to main content Accessibility help

Cognitive deficits in problematic internet use: meta-analysis of 40 studies

  • Konstantinos Ioannidis (a1), Roxanne Hook (a2), Anna E. Goudriaan (a3), Simon Vlies (a4), Naomi A. Fineberg (a5), Jon E. Grant (a6) and Samuel R. Chamberlain (a7)...



Excessive use of the internet is increasingly recognised as a global public health concern. Individual studies have reported cognitive impairment in problematic internet use (PIU), but have suffered from various methodological limitations. Confirmation of cognitive deficits in PIU would support the neurobiological plausibility of this disorder.


To conduct a rigorous meta-analysis of cognitive performance in PIU from case–control studies; and to assess the impact of study quality, the main type of online behaviour (for example gaming) and other parameters on the findings.


A systematic literature review was conducted of peer-reviewed case–controlled studies comparing cognition in people with PIU (broadly defined) with that of healthy controls. Findings were extracted and subjected to a meta-analysis where at least four publications existed for a given cognitive domain of interest.


The meta-analysis comprised 2922 participants across 40 studies. Compared with controls, PIU was associated with significant impairment in inhibitory control (Stroop task Hedge's g = 0.53 (s.e. = 0.19–0.87), stop-signal task g = 0.42 (s.e. = 0.17–0.66), go/no-go task g = 0.51 (s.e. = 0.26–0.75)), decision-making (g = 0.49 (s.e. = 0.28–0.70)) and working memory (g = 0.40 (s.e. = 0.20–0.82)). Whether or not gaming was the predominant type of online behaviour did not significantly moderate the observed cognitive effects; nor did age, gender, geographical area of reporting or the presence of comorbidities.


PIU is associated with decrements across a range of neuropsychological domains, irrespective of geographical location, supporting its cross-cultural and biological validity. These findings also suggest a common neurobiological vulnerability across PIU behaviours, including gaming, rather than a dissimilar neurocognitive profile for internet gaming disorder.

Declaration of interest

S.R.C. consults for Cambridge Cognition and Shire. K.I.’s research activities were supported by Health Education East of England Higher Training Special interest sessions. A.E.G.'s research has been funded by Innovational grant (VIDI-scheme) from ZonMW: (91713354). N.A.F. has received research support from Lundbeck, Glaxo-SmithKline, European College of Neuropsychopharmacology (ECNP), Servier, Cephalon, Astra Zeneca, Medical Research Council (UK), National Institute for Health Research, Wellcome Foundation, University of Hertfordshire, EU (FP7) and Shire. N.A.F. has received honoraria for lectures at scientific meetings from Abbott, Otsuka, Lundbeck, Servier, Astra Zeneca, Jazz pharmaceuticals, Bristol Myers Squibb, UK College of Mental Health Pharmacists and British Association for Psychopharmacology (BAP). N.A.F. has received financial support to attend scientific meetings from RANZCP, Shire, Janssen, Lundbeck, Servier, Novartis, Bristol Myers Squibb, Cephalon, International College of Obsessive-Compulsive Spectrum Disorders, International Society for Behavioral Addiction, CINP, IFMAD, ECNP, BAP, the World Health Organization and the Royal College of Psychiatrists. N.A.F. has received financial royalties for publications from Oxford University Press and payment for editorial duties from Taylor and Francis. J.E.G. reports grants from the National Center for Responsible Gaming, Forest Pharmaceuticals, Takeda, Brainsway, and Roche and others from Oxford Press, Norton, McGraw-Hill and American Psychiatric Publishing outside of the submitted work.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cognitive deficits in problematic internet use: meta-analysis of 40 studies
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cognitive deficits in problematic internet use: meta-analysis of 40 studies
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cognitive deficits in problematic internet use: meta-analysis of 40 studies
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Konstantinos Ioannidis, S3 Eating Disorders, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK. Email:


Hide All
1Grohol, JM. Future clinical directions: professional development, pathology, and psychotherapy on-line. In Psychology and the Internet: Intrapersonal, Interpersonal, and Transpersonal Implications (ed Gackenbach, J): 111–40. Academic Press, 1998.
2Gackenbach, J. Psychology and the Internet. Intrapersonal, Interpersonal, and Transpersonal Implications (1st edn). Academic Press, 1998.
3Young, KS. Internet addiction: the emergence of a new clinical disorder. Publ CyberPsychology Behav 1998; 1: 237–44.
4Kuss, DJ, Griffiths, MD, Karila, L, Billieux, J. Internet addiction: a systematic review of epidemiological research for the last decade. Curr Pharm Des 2014; 20: 4026–52.
5Beard, KW, Wolf, EM. Modification in the proposed diagnostic criteria for internet addiction. CyberPsychology Behav 2001; 4: 377–83.
6Kardefelt-Winther, D. A conceptual and methodological critique of internet addiction research: towards a model of compensatory internet use. Comput Human Behav 2014; 31: 351–4.
7American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). American Psychiatric Association, 2013.
8Shapira, NA, Lessig, MC, Goldsmith, TD, Szabo, ST, Lazoritz, M, Gold, MS, et al. Problematic internet use: proposed classification and diagnostic criteria. Depress Anxiety 2003; 17: 207–16.
9Aboujaoude, E. Problematic Internet use: an overview. World Psychiatry 2010; 9: 8590.
10Pontes, HM. Investigating the differential effects of social networking site addiction and Internet gaming disorder on psychological health. J Behav Addict 2017; 6: 601–10.
11Ioannidis, K, Chamberlain, SR, Treder, MS, Kiraly, F, Leppink, E, Redden, S, et al. Problematic internet use (PIU): associations with the impulsive-compulsive spectrum. An application of machine learning in psychiatry. J Psychiatr Res 2016; 83: 94102.
12Bianchini, V, Cecilia, MR, Roncone, R, Cofini, V. Prevalence and factors associated with problematic internet use: an Italian survey among L'Aquila students. Riv Psichiatr 2017; 52: 90–3.
13Király, O, Griffiths, MD, Demetrovics, Z. Internet gaming disorder and the DSM-5: conceptualization, debates, and controversies. Curr Addict Reports 2015; 2: 254–62.
14Ioannidis, K, Treder, MS, Chamberlain, SR, Kiraly, F, Redden, SA, Stein, DJ, et al. Problematic internet use as an age-related multifaceted problem: evidence from a two-site survey. Addict Behav 2018; 81: 157–66.
15Block, JJ. Issues for DSM-V: internet addiction. Am J Psychiatry 2008; 165: 306–7.
16Zohar, J. Addiction, impulsivity and obsessive-compulsive disorder: new formulation revealing ancient wisdom. Isr Med Assoc J 2010; 12: 233.
17Chamberlain, SR, Lochner, C, Stein, DJ, Goudriaan, AE, van Holst, RJ, Zohar, J, et al. Behavioural addiction—A rising tide? Eur Neuropsychopharmacol 2016; 26: 841–55.
18Brand, M, Young, KS, Laier, C, Wölfling, K, Potenza, MN. Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: an interaction of person-affect-cognition-execution (I-PACE) model. Neurosci Biobehav Rev 2016; 71: 252–66.
19Argyriou, E, Davison, CB, Lee, TTC. Response inhibition and internet gaming disorder: a meta-analysis. Addict Behav 2017; 71: 5460.
20Chamberlain, SR, Redden, SA, Leppink, E, Grant, JE. Problematic internet use in gamblers: impact on clinical and cognitive measures. CNS Spectr 2017; 22: 495503.
21Stroup, DF, Berlin, JA, Morton, SC, Olkin, I, Williamson, GD, Rennie, D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008–12.
22Quintana, DS. From pre-registration to publication: a non-technical primer for conducting a meta-analysis to synthesize correlational data. Front Psychol 2015; 6: 1549.
23Egger, M, Davey Smith, G, Schneider, M, Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–34.
24Duval, S, Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–63.
25Chen, CY, Huang, MF, Yen, JY, Chen, CS, Liu, GC, Yen, CF. Brain correlates of response inhibition in internet gaming disorder. Psychiatry Clin Neurosci 2015; 69: 201–9.
26Ding, WN, Sun, JH, Sun, YW, Chen, X, Zhou, Y, Zhuang, ZG, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a go/no-go fMRI study. Behav Brain Funct 2014; 10: 20.
27Dong, G, Lu, Q, Zhou, H, Zhao, X. Impulse inhibition in people with internet addiction disorder: electrophysiological evidence from a go/nogo study. Neurosci Lett 2010; 485: 138–42.
28Kim, M, Lee, TH, Choi, JS, Kwak, YB, Hwang, WJ, Kim, T, et al. Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: perspectives from impulsivity and compulsivity. Sci Rep 2017; 7: 41742.
29Ko, CH, Hsieh, TJ, Chen, CY, Yen, CF, Chen, CS, Yen, JY, et al. Altered brain activation during response inhibition and error processing in subjects with internet gaming disorder: a functional magnetic imaging study. Euro Arch Psychiatry Clin Neurosci 2014; 264: 661–72.
30Littel, M, van den Berg, I, Luijten, M, van Rooij, AJ, Keemink, L, Franken, IH. Error processing and response inhibition in excessive computer game players: an event-related potential study. Addict Biol 2012; 17: 934–47.
31Liu, GC, Yen, JY, Chen, CY, Yen, CF, Chen, CS, Lin, WC, et al. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. Kaohsiung J Med Sci 2014; 30: 4351.
32Luijten, M, Meerkerk, GJ, Franken, IH, van de Wetering, BJ, Schoenmakers, TM. An fMRI study of cognitive control in problem gamers. Psychiatry Res 2015; 231: 262–68.
33Metcalf, O, Pammer, K. Impulsivity and related neuropsychological features in regular and addictive first person shooter gaming. Cyberpsychol Behav Social Netw 2014; 17: 147–52.
34Sun, DL, Chen, ZJ, Ma, N, Zhang, XC, Fu, XM, Zhang, DR. Decision-making and prepotent response inhibition functions in excessive internet users. CNS Spectr 2009; 14: 7581.
35Yao, YW, Wang, LJ, Yip, SW, Chen, PR, Li, S, Xu, J, et al. Impaired decision-making under risk is associated with gaming-specific inhibition deficits among college students with internet gaming disorder. Psychiatry Res 2015; 229: 302–9.
36Zhou, ZH, Yuan, GZ, Yao, JJ, Li, C, Cheng, ZH. An event-related potential investigation of deficient inhibitory control in individuals with pathological Internet use. Acta Neuropsychiatrica 2010; 22: 228–36.
37Zhou, Z, Zhou, H, Zhu, H. Working memory, executive function and impulsivity in internet-addictive disorders: a comparison with pathological gambling. Acta Neuropsychiatr 2016; 28: 92100.
38Zhou, Z, Zhu, H, Li, C, Wang, J. Internet addictive individuals share impulsivity and executive dysfunction with alcohol-dependent patients. Front Behav Neurosci 2014; 8: 288.
39Choi, JS, Park, SM, Lee, J, Hwang, JY, Jung, HY, Choi, SW, et al. Resting-state beta and gamma activity in internet addiction. Int J Psychophysiol 2013; 89: 328–33.
40Choi, S-W, Kim, H, Kim, G-Y, Jeon, Y, Park, S, Lee, J-Y, et al. Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: a focus on impulsivity and compulsivity. J Behav Addict 2014; 3: 246–53.
41Li, H, Zou, Y, Wang, J, Yang, X. Role of stressful life events, avoidant coping styles, and neuroticism in online game addiction among college students: a moderated mediation model. Front Psychol 2016; 7: 111.
42Lim, J-A, Lee, J-Y, Jung, HY, Sohn, BK, Choi, S-W, Kim, YJ, et al. Changes of quality of life and cognitive function in individuals with Internet gaming disorder. Medicine (Baltimore) 2016; 95: e5695.
43Cai, C, Yuan, K, Yin, J, Feng, D, Bi, Y, Li, Y, et al. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imag Behav 2016; 10: 1220.
44Choi, JS, Park, SM, Roh, MS, Lee, JY, Park, CB, Hwang, JY, et al. Dysfunctional inhibitory control and impulsivity in internet addiction. Psychiatry Res 2014; 215: 424–28.
45Dong, G, Zhou, H, Zhao, X. Male internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neurosci Lett 2011; 499: 114–18.
46Dong, G, Lin, X, Zhou, H, Lu, Q. Cognitive flexibility in internet addicts: fMRI evidence from difficult-to-easy and easy-to-difficult switching situations. Addict Behav 2014; 39: 677–83.
47Dong, G, Hu, Y, Lin, X, Lu, Q. What makes internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biol Psychol 2013; 94: 282–89.
48Dong, G, Shen, Y, Huang, J, Du, X. Impaired error-monitoring function in people with internet addiction disorder: an event-related fMRI study. Euro Addict Res 2013; 19: 269–75.
49Dong, G, Li, H, Wang, L, Potenza, MN. Cognitive control and reward/loss processing in internet gaming disorder: results from a comparison with recreational internet game-users. Euro Psychiatry 2017; 44: 30–8.
50Dong, G, Hu, Y, Lin, X. Reward/punishment sensitivities among internet addicts: implications for their addictive behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46: 139–45.
51Dong, G, Huang, J, Du, X. Enhanced reward sensitivity and decreased loss sensitivity in internet addicts: an fMRI study during a guessing task. J Psychiatr Res 2011; 45: 1525–29.
52Wang, H, Jin, C, Yuan, K, Shakir, TM, Mao, C, Niu, X, et al. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder. Front Behav Neurosci 2015; 9: 64.
53Xing, L, Yuan, K, Bi, Y, Yin, J, Cai, C, Feng, D, et al. Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res 2014; 1586: 109–17.
54Yuan, K, Yu, D, Cai, C, Feng, D, Li, Y, Bi, Y, et al. Frontostriatal circuits, resting state functional connectivity and cognitive control in internet gaming disorder. Addict Biol 2017; 22: 813–22.
55Yuan, K, Qin, W, Yu, D, Bi, Y, Xing, L, Jin, C, et al. Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Struct Funct 2016; 221: 1427–42.
56Lorenz, RC, Krüger, JK, Neumann, B, Schott, BH, Kaufmann, C, Heinz, A, et al. Cue reactivity and its inhibition in pathological computer game players. Addict Biol 2013; 18: 134–46.
57Pawlikowski, M, Brand, M. Excessive internet gaming and decision making: do excessive world of warcraft players have problems in decision making under risky conditions? Psychiatry Res 2011; 188: 428–33.
58Qi, X, Du, X, Yang, Y, Du, G, Gao, P, Zhang, Y, et al. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder. Front Behav Neurosci 2015; 9: 296.
59Nikolaidou, M, Fraser, DS, Hinvest, N. Physiological markers of biased decision-making in problematic internet users. J Behav Addict 2016; 5: 510–17.
60King, DL, Delfabbro, PH. Is preoccupation an oversimplification? A call to examine cognitive factors underlying internet gaming disorder. Addiction 2014; 109: 1566–7.
61Pontes, HM, Griffiths, MD. Internet Gaming Disorder and its associated cognitions and cognitive-related impairments: a systematic review using PRISMA guidelines. Rev Argent Cienc Comport 2015; 7: 102–18.
62Chamberlain, SR, Ioannidis, K, Grant, JE. The impact of comorbid impulsive/compulsive disorders on problematic internet use. J Behav Addict 2018; 7; 269–79.
63Hadar, A, Hadas, I, Lazarovits, A, Alyagon, U, Eliraz, D, Zangen, A. Answering the missed call: initial exploration of cognitive and electrophysiological changes associated with smartphone use and abuse. PLoS One 2017; 12: e0180094.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Ioannidis et al. supplementary material
Ioannidis et al. supplementary material

 Word (2.0 MB)
2.0 MB

Cognitive deficits in problematic internet use: meta-analysis of 40 studies

  • Konstantinos Ioannidis (a1), Roxanne Hook (a2), Anna E. Goudriaan (a3), Simon Vlies (a4), Naomi A. Fineberg (a5), Jon E. Grant (a6) and Samuel R. Chamberlain (a7)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.