Skip to main content Accessibility help
×
Home

Brain functional changes across the different phases of bipolar disorder

  • Edith Pomarol-Clotet (a1), Silvia Alonso-Lana (a1), Noemi Moro (a2), Salvador Sarró (a1), Mar C. Bonnin (a3), José M. Goikolea (a3), Paloma Fernández-Corcuera (a2), Benedikt L. Amann (a4), Anna Romaguera (a4), Eduard Vieta (a3), Josep Blanch (a5), Peter J. McKenna (a4) and Raymond Salvador (a4)...

Abstract

Background

Little is known about how functional imaging changes in bipolar disorder relate to different phases of the illness.

Aims

To compare cognitive task activation in participants with bipolar disorder examined in different phases of illness.

Method

Participants with bipolar disorder in mania (n = 38), depression (n = 38) and euthymia (n = 38), as well as healthy controls (n = 38), underwent functional magnetic resonance imaging during performance of the n-back working memory task. Activations and de-activations were compared between the bipolar subgroups and the controls, and among the bipolar subgroups. All participants were also entered into a linear mixed-effects model.

Results

Compared with the controls, the mania and depression subgroups, but not the euthymia subgroup, showed reduced activation in the dorsolateral prefrontal cortex, the parietal cortex and other areas. Compared with the euthymia subgroup, the mania and depression subgroups showed hypoactivation in the parietal cortex. All three bipolar subgroups showed failure of de-activation in the ventromedial frontal cortex. Linear mixed-effects modelling revealed a further cluster of reduced activation in the left dorsolateral prefrontal cortex in the patients; this was significantly more marked in the mania than in the euthymia subgroup.

Conclusions

Bipolar disorder is characterised by mood state-dependent hypoactivation in the parietal cortex. Reduced dorsolateral prefrontal activation is a further feature of mania and depression, which may improve partially in euthymia. Failure of de-activation in the medial frontal cortex shows trait-like characteristics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Brain functional changes across the different phases of bipolar disorder
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Brain functional changes across the different phases of bipolar disorder
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Brain functional changes across the different phases of bipolar disorder
      Available formats
      ×

Copyright

Corresponding author

Edith Pomarol-Clotet, FIDMAG, Germanes Hospitalàries, Benito Menni CASM, C/. Dr. Antoni Pujadas 38, 08830 Sant Boi de Llobregat, Barcelona. Email: epomerol-clotet@fidmag.com

Footnotes

Hide All

This work was supported by (a) the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM); (b) several grants from the Instituto de Salud Carlos III (Miguel Servet Research Contract to E.P.-C. (CP10/00596), to B.A. (CP06/00359) and to R.S. (CP07/00048); intensification grant to S.S. (10/231) and to P.J.M. (12/325); PhD grant to S.A.-L. (FI11/00221); project grants to R.S. (PI05/1874 and PI10/01071); (c) the Comissionat per a Universitats i Recerca del DIUE from the Catalonian Government (grants 2009 SGR211 and 2009 SGR1022).

Declaration of interest

None.

Footnotes

References

Hide All
1 Strakowski, SM, Delbello, MP, Adler, CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005; 10: 105–16.
2 Green, MJ, Cahill, CM, Malhi, GS. The cognitive and neurophysiological basis of emotion dysregulation in bipolar disorder. J Affect Disord 2007; 103: 2942.
3 Savitz, J, Drevets, WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33: 699771.
4 Strakowski, SM, Adler, CM, Almeida, J, Altshuler, LL, Blumberg, HP, Chang, KD, et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 2012; 14: 313–25.
5 Kupferschmidt, DA, Zakzanis, KK. Toward a functional neuroanatomical signature of bipolar disorder: quantitative evidence from the neuroimaging literature. Psychiatry Res 2011; 193: 71–9.
6 Chen, CH, Suckling, J, Lennox, BR, Ooi, C, Bullmore, ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 2011; 13:115.
7 Townsend, J, Bookheimer, SY, Foland-Ross, LC, Sugar, CA, Altshuler, LL. fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Res 2010; 182: 22–9.
8 Raichle, ME, MacLeod, AM, Snyder, AZ, Powers, WJ, Gusnard, DA, Shulman, GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001; 98: 676–82.
9 Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 138.
10 Pomarol-Clotet, E, Moro, N, Sarro, S, Goikolea, JM, Vieta, E, Amann, B, et al. Failure of de-activation in the medial frontal cortex in mania: evidence for default mode network dysfunction in the disorder. World J Biol Psychiatry 2012; 13: 616–26.
11 Fernandez-Corcuera, P, Salvador, R, Monte, GC, Salvador Sarró, S, Goikolea, JM, Amann, B, et al. Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. J Affect Disord 2013; 148: 170–8.
12 Strakowski, SM, Adler, CM, Cerullo, MA, Eliassen, JC, Lamy, M, Fleck, DE, et al. MRI brain activation in first-episode bipolar mania during a response inhibition task. Early Interv Psychiatry 2008; 2: 225–33.
13 Allin, MP, Marshall, N, Schulze, K, Walshe, M, Hall, MH, Picchioni, M, et al. A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives. Psychol Med 2010; 40: 2025–35.
14 Cremaschi, L, Penzo, B, Palazzo, M, Dobrea, C, Cristoffanini, M, Dell'Osso, B, et al. Assessing working memory via N-back task in euthymic bipolar I disorder patients: a review of functional magnetic resonance imaging studies. Neuropsychobiology 2013; 68: 6370.
15 Pomarol-Clotet, E, Salvador, R, Sarro, S, Gomar, J, Vila, F, Martínez, A, Guerrero, A, et al. Failure to deactivate in the prefrontal cortex in schizophrenia: dysfunction of the default mode network? Psychol Med 2008; 38: 1185–93.
16 Salgado-Pineda, P, Fakra, E, Delaveau, P, McKenna, PJ, Pomarol-Clotet, E, Blin, O. Correlated structural and functional brain abnormalities in the default mode network in schizophrenia patients. Schizophr Res 2011; 125: 101–9.
17 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder (4th edn) (DSM-IV). APA, 1994.
18 Young, RC, Biggs, JT, Ziegler, VE, Meyer, DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–35.
19 Hamilton, M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960; 23: 5662.
20 Del Ser, T, Gonzalez-Montalvo, JI, Martinez-Espinosa, S, Delgado-Villapalos, C, Bermejo, F. Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of dementia. Brain Cogn 1997; 33: 343–56.
21 Wechsler, D. Wechsler Adult Intelligence Scale (3rd edn). Psychological Corporation, 1997.
22 Gomar, JJ, Ortiz-Gil, J, McKenna, PJ, Salvador, R, Sans-Sansa, B, Sarró, S, et al. Validation of the Word Accentuation Test (TAP) as a means of estimating premorbid IQ in Spanish speakers. Schizophr Res 2011; 128: 175–6.
23 Gevins, A, Cutillo, B. Spatiotemporal dynamics of component processes in human working memory. Electroencephalogr Clin Neurophysiol 1993; 87: 128–43.
24 Green, DM, Swets, JA. Signal Detection Theory and Psychophysics. Krieger, 1966.
25 Smith, SM, Jenkinson, M, Woolrich, MW, Beckmann, CF, Behrens, TE, Johansen-Berg, H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (suppl 1): S20819.
26 Guy, W. ECDEU Assessment Manual for Psychopharmacology. Revised DHEW Pub. (ADM). National Institute for Mental Health, 1976.
27 Jones, SH, Thornicroft, G, Coffey, M, Dunn, G. A brief mental health outcome scale – reliability and validity of the Global Assessment of Functioning (GAF). Br J Psychiatry 1995; 166: 654–9.
28 Owen, AM, McMillan, KM, Laird, AR, Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005; 25: 4659.
29 Chen, CH, Suckling, J, Ooi, C, Jacob, R, Lupson, V, Bulmore, ET, et al. A longitudinal fMRI study of the manic and euthymic states of bipolar disorder. Bipolar Disord 2010; 12: 344–7.
30 Blumberg, HP, Leung, HC, Skudlarski, P, Lacadie, CM, Fredericks, CA, Harris, BC, et al. A functional magnetic resonance imaging study of bipolar disorder: state- and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003; 60: 601–9.
31 Elliott, R, Ogilvie, A, Rubinsztein, JS, Calderon, G, Dolan, RJ, Sahakian, BJ. Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania. Biol Psychiatry 2004; 55: 1163–70.
32 Altshuler, LL, Bookheimer, SY, Townsend, J, Proenza, MA, Eisenberger, N, Sabb, F, et al. Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol Psychiatry 2005; 58: 763–9.
33 Mazzola-Pomietto, P, Kaladjian, A, Azorin, JM, Anton, JL, Jeanningros, R. Bilateral decrease in ventrolateral prefrontal cortex activation during motor response inhibition in mania. J Psychiatr Res 2009; 43: 432–41.
34 Blumberg, HP, Stern, E, Ricketts, S, Martinez, D, de Asis, J, White, T, et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999; 156: 1986–8.
35 Rubinsztein, JS, Fletcher, PC, Rogers, RD, Ho, LW, Aigbirhio, FI, Paykel, ES, et al. Decision-making in mania: a PET study. Brain 2001; 124: 2550–63.
36 Monks, PJ, Thompson, JM, Bullmore, ET, Suckling, J, Brammer, MJ, Williams, SC, et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for task-specific dysfunction. Bipolar Disord 2004; 6: 550–64.
37 Altshuler, L, Bookheimer, S, Townsend, J, Proenza, MA, Sabb, F, Mintz, J, et al. Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study. Bipolar Disord 2008; 10: 708–17.
38 Lagopoulos, J, Ivanovski, B, Malhi, GS. An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 2007; 32: 174–84.
39 Murray, RM, Sham, P, Van Os, J, Zanelli, J, Cannon, M, McDonald, C. A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res 2004; 71: 405–16.
40 Robinson, LJ, Ferrier, IN. Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disord 2006; 8: 103–16.
41 Martinez-Aran, A, Vieta, E, Reinares, M, Colom, F, Torrent, C, Sánchez-Moreno, J, et al. Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. Am J Psychiatry 2004; 161: 262–70.
42 Calhoun, VD, Maciejewski, PK, Pearlson, GD, Kiehl, KA. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp 2008; 29: 1265–75.
43 Gusnard, DA, Raichle, ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001; 2: 685–94.
Type Description Title
PDF
Supplementary materials

Pomarol-Clotet et al. supplementary material
Supplementary Material

 PDF (266 KB)
266 KB

Brain functional changes across the different phases of bipolar disorder

  • Edith Pomarol-Clotet (a1), Silvia Alonso-Lana (a1), Noemi Moro (a2), Salvador Sarró (a1), Mar C. Bonnin (a3), José M. Goikolea (a3), Paloma Fernández-Corcuera (a2), Benedikt L. Amann (a4), Anna Romaguera (a4), Eduard Vieta (a3), Josep Blanch (a5), Peter J. McKenna (a4) and Raymond Salvador (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Brain functional changes across the different phases of bipolar disorder

  • Edith Pomarol-Clotet (a1), Silvia Alonso-Lana (a1), Noemi Moro (a2), Salvador Sarró (a1), Mar C. Bonnin (a3), José M. Goikolea (a3), Paloma Fernández-Corcuera (a2), Benedikt L. Amann (a4), Anna Romaguera (a4), Eduard Vieta (a3), Josep Blanch (a5), Peter J. McKenna (a4) and Raymond Salvador (a4)...
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *