Skip to main content Accessibility help
×
Home

An fMRI study of multimodal selective attention in schizophrenia

  • Andrew R. Mayer (a1), Faith M. Hanlon (a2), Terri M. Teshiba (a3), Stefan D. Klimaj (a2), Josef M. Ling (a2), Andrew B. Dodd (a2), Vince D. Calhoun (a4), Juan R. Bustillo (a5) and Trent Toulouse (a2)...
  • Please note a correction has been issued for this article.

Abstract

Background

Studies have produced conflicting evidence regarding whether cognitive control deficits in patients with schizophrenia result from dysfunction within the cognitive control network (CCN; top-down) and/or unisensory cortex (bottom-up).

Aims

To investigate CCN and sensory cortex involvement during multisensory cognitive control in patients with schizophrenia.

Method

Patients with schizophrenia and healthy controls underwent functional magnetic resonance imaging while performing a multisensory Stroop task involving auditory and visual distracters.

Results

Patients with schizophrenia exhibited an overall pattern of response slowing, and these behavioural deficits were associated with a pattern of patient hyperactivation within auditory, sensorimotor and posterior parietal cortex. In contrast, there were no group differences in functional activation within prefrontal nodes of the CCN, with small effect sizes observed (incongruent–congruent trials). Patients with schizophrenia also failed to upregulate auditory cortex with concomitant increased attentional demands.

Conclusions

Results suggest a prominent role for dysfunction within auditory, sensorimotor and parietal areas relative to prefrontal CCN nodes during multisensory cognitive control.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An fMRI study of multimodal selective attention in schizophrenia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An fMRI study of multimodal selective attention in schizophrenia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An fMRI study of multimodal selective attention in schizophrenia
      Available formats
      ×

Copyright

Corresponding author

Andrew R. Mayer, PhD, The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106, USA; Email: amayer@mrn.org

Footnotes

Hide All

Declaration of interest

J.R.B. reported receiving an honorarium for consulting for Otsuka Pharmaceuticals.

Footnotes

References

Hide All
1 Mayer, AR, Franco, AR, Canive, J, Harrington, DL. The effects of stimulus modality and frequency of stimulus presentation on cross-modal distraction. Cereb Cortex 2009; 19: 9931007.
2 Lesh, TA, Westphal, AJ, Niendam, TA, Yoon, JH, Minzenberg, MJ, Ragland, JD, et al. Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. Neuroimage Clin 2013; 2: 590–9.
3 Lesh, TA, Niendam, TA, Minzenberg, MJ, Carter, CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 2011; 36: 316–38.
4 Tregellas, JR, Smucny, J, Eichman, L, Rojas, DC. The effect of distracting noise on the neuronal mechanisms of attention in schizophrenia. Schizophr Res 2012; 142: 230–6.
5 Verleger, R, Talamo, S, Simmer, J, Smigasiewicz, K, Lencer, R. Neurophysiological sensitivity to attentional overload in patients with psychotic disorders. Clin Neurophysiol 2013; 124: 881–92.
6 Smucny, J, Rojas, DC, Eichman, LC, Tregellas, JR. Neural effects of auditory distraction on visual attention in schizophrenia. PLoS ONE 2013; 8: e60606.
7 Weiss, EM, Siedentopf, C, Golaszewski, S, Mottaghy, FM, Hofer, A, Kremser, C, et al. Brain activation patterns during a selective attention test—a functional MRI study in healthy volunteers and unmedicated patients during an acute episode of schizophrenia. Psychiatry Res 2007; 154: 3140.
8 Sugranyes, G, Kyriakopoulos, M, Dima, D, O'Muircheartaigh, J, Corrigall, R, Pendelbury, G, et al. Multimodal analyses identify linked functional and white matter abnormalities within the working memory network in schizophrenia. Schizophr Res 2012; 138: 136–42.
9 Ridderinkhof, KR, van den Wildenberg, WP, Segalowitz, SJ, Carter, CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn 2004; 56: 129–40.
10 Minzenberg, MJ, Laird, AR, Thelen, S, Carter, CS, Glahn, DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 2009; 66: 811–22.
11 Ungar, L, Nestor, PG, Niznikiewicz, MA, Wible, CG, Kubicki, M. Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res 2010; 181: 24–9.
12 Potkin, SG, Turner, JA, Brown, GG, McCarthy, G, Greve, DN, Glover, GH, et al. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull 2009; 35: 1931.
13 Weiss, EM, Golaszewski, S, Mottaghy, FM, Hofer, A, Hausmann, A, Kemmler, G, et al. Brain activation patterns during a selective attention test-a functional MRI study in healthy volunteers and patients with schizophrenia. Psychiatry Res 2003; 123: 115.
14 Edwards, BG, Barch, DM, Braver, TS. Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Front Hum Neurosci 2010; 4: 32.
15 Vercammen, A, Morris, R, Green, MJ, Lenroot, R, Kulkarni, J, Carr, VJ, et al. Reduced neural activity of the prefrontal cognitive control circuitry during response inhibition to negative words in people with schizophrenia. J Psychiatry Neurosci 2012; 37: 379–88.
16 Brenner, CA, Krishnan, GP, Vohs, JL, Ahn, WY, Hetrick, WP, Morzorati, SL, et al. Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 2009; 35: 1065–77.
17 Rissling, AJ, Park, SH, Young, JW, Rissling, MB, Sugar, CA, Sprock, J, et al. Demand and modality of directed attention modulate pre-attentive sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophr Res 2013; 146: 326–35.
18 Patterson, JV, Hetrick, WP, Boutros, NN, Jin, Y, Sandman, C, Stern, H, et al. P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Res 2008; 158: 226–47.
19 Mayer, AR, Ruhl, D, Merideth, F, Ling, J, Hanlon, FM, Bustillo, J, et al. Functional imaging of the hemodynamic sensory gating response in schizophrenia. Hum Brain Mapp 2013; 34: 2302–12.
20 Backes, V, Kellermann, T, Voss, B, Kramer, J, Depner, C, Schneider, F, et al. Neural correlates of the attention network test in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2011; 261: S15560.
21 Baier, B, Kleinschmidt, A, Muller, NG. Cross-modal processing in early visual and auditory cortices depends on expected statistical relationship of multisensory information. J Neurosci 2006; 26: 12260–5.
22 Weissman, DH, Warner, LM, Woldorff, MG. The neural mechanisms for minimizing cross-modal distraction. J Neurosci 2004; 24: 10941–9.
23 Gardner, DM, Murphy, AL, O'Donnell, H, Centorrino, F, Baldessarini, RJ. International consensus study of antipsychotic dosing. Am J Psychiatry 2010; 167: 686–93.
24 Mayer, AR, Wilcox, CE, Teshiba, TM, Ling, JM, Yang, Z. Hyperactivation of the cognitive control network in cocaine use disorders during a multisensory Stroop task. Drug Alcohol Depend 2013; 133: 235–41.
25 Mayer, AR, Teshiba, TM, Franco, AR, Ling, J, Shane, MS, Stephen, JM, et al. Modeling conflict and error in the medial frontal cortex. Hum Brain Mapp 2011; 33: 2843–55.
26 Miller, GA, Chapman, JP. Misunderstanding analysis of covariance. J Abnorm Psychol 2001; 110: 40–8.
27 Power, JD, Barnes, KA, Snyder, AZ, Schlaggar, BL, Petersen, SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012; 59: 2142–54.
28 McKiernan, KA, Kaufman, JN, Kucera-Thompson, J, Binder, JR. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 2003; 15: 394408.
29 Beauchamp, MS, Argall, BD, Bodurka, J, Duyn, JH, Martin, A. Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat Neurosci 2004; 7: 1190–2.
30 Smucny, J, Olincy, A, Eichman, LC, Lyons, E, Tregellas, JR. Early sensory processing deficits predict sensitivity to distraction in schizophrenia. Schizophr Res 2013; 147: 196200.
31 Tregellas, JR, Ellis, J, Shatti, S, Du, YP, Rojas, DC. Increased hippocampal, thalamic, and prefrontal hemodynamic response to an urban noise stimulus in schizophrenia. Am J Psychiatry 2009; 166: 354–60.
32 Arce, E, Leland, DS, Miller, DA, Simmons, AN, Winternheimer, KC, Paulus, MP. Individuals with schizophrenia present hypo- and hyperactivation during implicit cueing in an inhibitory task. Neuroimage 2006; 32: 704–13.
33 Ludewig, K, Geyer, MA, Vollenweider, FX. Deficits in prepulse inhibition and habituation in never-medicated, first-episode schizophrenia. Biol Psychiatry 2003; 54: 121–8.
34 Lewis-Hanna, LL, Hunter, MD, Farrow, TF, Wilkinson, ID, Woodruff, PW. Enhanced cortical effects of auditory stimulation and auditory attention in healthy individuals prone to auditory hallucinations during partial wakefulness. Neuroimage 2011; 57: 1154–61.
35 Kompus, K, Falkenberg, LE, Bless, JJ, Johnsen, E, Kroken, RA, Krakvik, B, et al. The role of the primary auditory cortex in the neural mechanism of auditory verbal hallucinations. Front Hum Neurosci 2013; 7: 144.
36 Regenbogen, C, De, VM, Debener, S, Turetsky, BI, Mossnang, C, Finkelmeyer, A, et al. Auditory processing under cross-modal visual load investigated with simultaneous EEG-fMRI. PLoS One 2012; 7: e52267.
37 Vita, A, De, PL, Deste, G, Sacchetti, E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 2012; 2: e190.
38 Clasen, PC, Beevers, CG, Mumford, JA, Schnyer, DM. Cognitive control network connectivity in adolescent women with and without a parental history of depression. Dev Cogn Neurosci 2014; 7: 1322.
Type Description Title
PDF
Supplementary materials

Mayer et al. supplementary material
Supplementary Material

 PDF (1.9 MB)
1.9 MB

An fMRI study of multimodal selective attention in schizophrenia

  • Andrew R. Mayer (a1), Faith M. Hanlon (a2), Terri M. Teshiba (a3), Stefan D. Klimaj (a2), Josef M. Ling (a2), Andrew B. Dodd (a2), Vince D. Calhoun (a4), Juan R. Bustillo (a5) and Trent Toulouse (a2)...
  • Please note a correction has been issued for this article.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

An fMRI study of multimodal selective attention in schizophrenia

  • Andrew R. Mayer (a1), Faith M. Hanlon (a2), Terri M. Teshiba (a3), Stefan D. Klimaj (a2), Josef M. Ling (a2), Andrew B. Dodd (a2), Vince D. Calhoun (a4), Juan R. Bustillo (a5) and Trent Toulouse (a2)...
  • Please note a correction has been issued for this article.
Submit a response

eLetters

No eLetters have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *



A correction has been issued for this article: