Skip to main content Accessibility help
×
Home

Irrational “Coefficients” in Renaissance Algebra

  • Jeffrey A. Oaks (a1)

Argument

From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply $\sqrt {18} $ by x, for instance, the result was expressed as the rhetorical equivalent of $\sqrt {18{x^2}} $ . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or “number,” of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, “cossic” algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Irrational “Coefficients” in Renaissance Algebra
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Irrational “Coefficients” in Renaissance Algebra
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Irrational “Coefficients” in Renaissance Algebra
      Available formats
      ×

Copyright

References

Hide All
Abdeljaouad, Mahdi. 2002. “Le manuscrit mathématique de Jerba: Une pratique des symboles algébriques maghrébins en pleine maturité.” Quaderni de Ricerca in Didattica del G.R.I.M. 11:110173. Also published in Actes du 7ème Colloque Maghrébin sur l'Histoire des Mathématiques Arabes (2005), edited by Idrissi, Abdallah El and Laabid, Ezzaim, vol. 2, 998. Marrakech: École Normale Supérieure. Available online at: http://math.unipa.it/~grim/MahdiAbdjQuad11.pdf (last accessed March 29, 2017).
Kāmil, Abū. 1986. Kitāb fī al-jabr wa'l-muqābala. A facsimile edition of MS Istanbul, Kara Mustafa Paşa 379, copied in 1253 C.E., edited by Hogendijk, Jan P.. Frankfurt am Main: Institute for the History of Arabic-Islamic Science at the Johann Wolfgang Goethe University.
Kāmil, Abū. 2012. Algèbre et Analyse Diophantienne, edited by Rashed, Roshdi. Berlin: Walter de Gruyter.
ʿAlī al-Sulamī. Ca. tenth century. Al-Muqaddima al-kāfiyya fī ḥisāb al-jabr wa'l-muqābala wa mā yuʿrafu bihi qiyāsuhū min al-amthila [Sufficient Introduction on Calculation by Algebra and What One Can Learn from its Examples]. MS Vatican, Sbath 5.
Anonimo, Fiorentino. 1993. Trattato di Geometria Pratica: Dal Codice L. IV. 18 (sec. XV) della Biblioteca Comunale di Siena, ed. Simi, Annalisa. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 21).
Aurel, Marco. 1552. Libro Primero de Arithmetica Algebratica. Valencia: Joan de Mey Flandro.
Bachet, Claude Gaspar. 1621. Diophanti Alexandrini Arithmeticorum Libri Sex, et De Numeris Multangulis Liber Unus. Lvtetiae Parisiorvm: sumptibus H. Drovart.
Ben Miled, Marouane. 1999. “Les commentaires d'al-Māhānī et d'un anonyme du livre X des Éléments d'Euclide.” Arabic Sciences and Philosophy 9:89156.
Mo Benedetto da Firenze. 1982. La Reghola de Algebra Amuchabale: dal Codice L.IV.21 della Biblioteca Comunale di Siena, edited by Salomone, Lucia. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 2).
Biagio, . 1983. Chasi Exenplari alla Regola dell'Algibra nella Trascelta a Cura di Mo Benedetto: Dal Codice L.VI. [i.e. IV] 21 della Biblioteca Comunale di Siena, edited by Pieraccini, Licia. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 5).
al-Bīrūnī. 1934. The Book of Instruction in the Elements of the Art of Astrology. Translated by Wright, R. Ramsay. London: Luzac.
Bombelli, Rafael. 1579. L'Algebra. Bologna: Giouanni Rossi.
Bombelli, Rafael. 1966. L'Algebra. Prima Edizione Integrale. Milano: Feltrinelli.
Bos, Henk. 2001. Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept of Construction. New York: Springer.
Brasser, Jacob R. 1663. Regula Cos, of Algebra. Amsterdam: Gerrit van Goedesbergh.
Busard, Hubertus L. L. 1968. “L'algébre au moyen âge: Le ‘Liber Mensurationum’ d'Abû Bekr.” Journal des Savants Avril-Juin:65125.
Cajori, Florian. [1928-29] 1993. A History of Mathematical Notations. Chicago: Open Court. Reprinted by Dover.
Canacci, Raffaello. 1983. Ragionamenti d'Algebra i Problemi: Dal Codice Pal. 567 della Biblioteca Nazionale di Firenze, edited by Procissi, Angiolo. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 7).
Cardano, Girolamo. 1539. Hieronimi C. Cardani Medici Mediolanensis Practica Arithmetice, & Mensurandi Singularis in Qua Que Preter Alias Cotinentur, Versa Pagina Demonstrabit. Mediolani: Imprimebat impensis Bernardini Calusci.
Cardano, Girolamo. 1545. Artis Magnæ, sive De Regulis Algebraicis Lib. unus. Norimbergæ: per Ioh. Petreium excusum.
Cardano, Girolamo. 1570. De Aliza Regula, Libellus, etc. Basileæ: Ex officina Henricpetrina.
Cataldi, Pietro Antonio. 1620. Elementi delle Quantità Algebratiche. Bologna: Sebastiano Bonomi.
Ceulen, Ludolf van. 1615. Fundamenta Arithmetica et Geometrica. Lugduni Batauorum: apud Iacobum Marcum bibliopolam.
Christianidis, Jean, and Oaks, Jeffrey A.. 2013. “Practicing Algebra in Late Antiquity: The Problem-Solving of Diophantus of Alexandria.” Historia Mathematica 40:127163.
Clavius, Christoph. 1608. Algebra. Romae: Apud Bartholomaeum Zannettum.
Cyriaque de Mangin, Clément. 1620. La Geometrie et Pratique Generale d'Icelle. Paris.
Dardi, Maestro, 2001. Aliabraa Argibra: Dal manoscritto I.VII.17 della Biblioteca Comunale di Siena, ed. Franci, Raffaella. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 26).
Descartes, René. [1637]1954. The Geometry of Rene Descartes, With a Facsimile of the First Edition. Translated from the French and Latin by Smith, David Eugene and Latham, Marcia L.. New York: Dover.
Dibuadius, Christophorus. 1605. In Arithmeticam Irrationalium Evclidis Decimo Elementorum Libro Comprehensam Demonstratio Linealis & Numeralis. Arnhemii Geldri: Iohannem Iansonium.
Fibonacci. 1857. Liber Abaci , edited by Boncompagni, Baldassare. In Scritti di Leonardo Pisano, Matematico del Secolo Decimoterzo. Rome: Tipografia delle Scienze Matematiche.
Fibonacci. 2002. Fibonacci's Liber Abaci: A Translation into Modern English of Leonardo Pisano's Book of Calculation, translated by Sigler, Laurence E.. New York: Springer.
Figatelli, Giuseppe Maria. 1678. Trattato Aritmetico. Venetia: Steffano Cutti.
Follinus, Hermann. 1622. Algebra sive Liber de Rebus Occultis. Coloniæ: Excudebat Gerhardus Greuenbruch.
Franci, Raffaella, and Pancanti, Marisa, eds. 1988. Il Trattato d'Algibra: Dal manoscritto Fond. Prin. II.V.152 della Biblioteca Nazionale di Firenze. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 18).
Ghaligai, Francesco. 1548. Pratica d'Arithmetica. Firenze: Appresso Bernardo Giunti.
Ghetaldi, Marino. 1630. De Resolvtione & Compositione Mathematica Libri Quinqve. Romae: Typographia Reuerendæ Cameræ Apostolicæ.
Girard, Albert. 1629. Invention Nouvelle en l'Algèbre. Amsterdam: Chez Guillaume Iansson Blaeuw.
Gloriosi, Giovanni Camillo. 1639. Exercitationum Mathematicarum Decas Tertia. Neapoli: Roncalioni.
Gloriosi, Giovanni Camillo. 1641. Responsio Ioannis Camilli Gloriosi ad Apologiam Benedicti Maghetti. Neapoli: Roncalioni.
Gori, Dionigi. 1984. Libro e Trattato della Praticha d'Alcibra: Dal Codice L. IV.22 della Biblioteca Comunale di Siena, edited by Rigatelli, Laura Toti. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 9).
Gosselin, Guillaume. 1577. De Arte Magna. Paris: Aegidium Beys.
de Graaf, Abraham. 1672. De Beginselen van de Algebra Stelkonst. Amsterdam: Jan Rieuwertsz.
Grisio, Salvatore. 1641. Antanalisi a Quesiti Stampati nell'Analisi di Benedetto Maghetti. Roma: Francesco Caualli.
Harriot, Thomas. 1631. Artis Analyticae Praxis, Ad æquationes Algebraïcas Nouä, Expeditä, & Generali Methodo, Resoluendas. London: R. Barker et Hæred Io. Billii.
al-Hawārī. 2013. al-Lubāb fī sharḥ; Talkhīṣ aʿmāl al-ḥisāb [The Essential Commentary on [Ibn al-Bannāʾ’s] Condensed Book on the Operations of Arithmetic]. Edited by Abdeljaouad, Mahdi and Oaks, Jeffrey. Tunis: Association Tunisienne de Didactique des Mathématiques.
Henischus, George. 1609. Arithmetica Perfecta et Demonstrata: Doctrinam de Numero Triplici, Vulgari, Cossico & Astronomico Nova Methodo per Propositiones Explicatam. Augustae Vindelicorum: Franck.
Henrion, Denis (sometimes Didier). 1623. Sommaire de l'Algebre, Tres-Necessaire pourfaciliter l'interpretation du dixiesme Livre d'Euclide. Paris: Chez Iean Anthoine Ioallin.
Hoecke, Gielis van den. 1545. Arithmetica. Thantwerpen (now Antwerp).
Ibn al-Hāʾim. 2003. Sharh al-Urjūza al-Yāsmīnīya, de Ibn al-Hāʾim. Texte établi et commenté par Mahdi Abdeljaouad. Tunis: Publication de l'Association Tunisienne des Sciences Mathématiques.
Jean de Murs. 1990. Le Quadripartitum Numerorum de Jean de Murs: Introduction et édition critique, edited by l'Huillier, Ghislaine. Genève: Droz.
Kaunzner, Wolfgang, and Röttel, Karl. 2006. Christoff Rudolff aus Jauer in Schlesien: Zum 500. Geburtstag eines bedeutenden Cossisten und Arithmetikers, der aus diesem seinerzeit hoheitlich zur Krone von Böhmen gehörenden Landesteil stammt. Eichstätt: Polygon-Verlag.
al-Khwārizmī. 2009. Al-Khwārizmī: The Beginnings of Algebra. Edited, with translation and commentary by Rashed, Roshdi. London: SAQI.
Klein, Jacob. [1968]1992. Greek Mathematical Thought and the Origin of Algebra, translated by Brann, Eva. New York: [MIT Press] Dover.
La Roche, Étienne de. 1520. L'Arismethique Nouellement Composee. [Lyons]: Co[n]stantin Fradin.
Lantz, Johann. 1619. Institvtionvm Arithmeticarvm Libri Qvatvor, 2nd ed. Monachii: Henricus.
Levey, Martin. 1966. The Algebra of Abū Kāmil: Kitāb fī al-jābr waʾl-muqābala in a Commentary by Mordecai Finzi. Hebrew text, translation and commentary with special reference to the Arabic text. Madison: University of Wisconsin.
Maghetti, Benedetto. 1639. Analisi o Risolutione de Quesiti Altre Volte Stampati. Ancona: Marco Saluioni.
Maghetti, Benedetto. 1640. Apologia di Benedetto Maghetti d'Assisi. Ancona: Marco Saluioni.
Malet, Antoni. 2006. “Renaissance Notions of Number and Magnitude.” Historia Mathematica 33:6381.
Marre, Aristide, ed. 1880. “Le Triparty en la Science des Nombres par Maistre Nicolas Chuquet Parisien.” Bullettino di Bibliografia e di Storia delle Scienze Matematiche e Fisiche 13:593-659, 693814.
Mennher de Kempten, Valentin. 1556. Arithmetique Seconde. Imprimé en Anuers: par Ian Loë.
Nuñez, Pedro. 1567. Libro de Algebra en Arithmetica y Geometria. En Anvers: En casa de los herederos d'Arnoldo Birckman a la Gallina gorda.
Oaks, Jeffrey A. 2007. “Arabic Algebra as an Artificial Language.” Journal of Indian Philosophy 35:543575.
Oaks, Jeffrey A. 2009. “Polynomials and Equations in Arabic Algebra.” Archive for History of Exact Sciences 63:169203.
Oaks, Jeffrey A. 2010. “Polynomials and Equations in Medieval Italian Algebra.” Bollettino di Storia delle Scienze Matematiche 30:2360.
Oaks, Jeffrey A. 2012. “Algebraic Symbolism in Medieval Arabic.” Philosophica 87:2783.
Oaks, Jeffrey A., and Alkhateeb, Haitham M.. 2007. “Simplifying Equations in Arabic Algebra.” Historia Mathematica 34:4561.
Pacioli, Luca. 1494. Summa de Arithmetica Geometria Proportioni & Proportionalita, Continentia de tutta lopera. Venetijs: Paganino de Paganini.
Peletier, Jacques. 1554. L'Algebre. Lyon: Ian de Tournes.
Peletier, Jacques. 1560. De Occulta Parte Numerorum, quam Algebram Vocant, Libri Duo. Paris: Apud Gulielmum Cauellat.
Pérez de Moya, Juan. 1573. Tratado de Mathematicas en que se Contienen Cosas Arithmetica, Geometria, Cosmographia, y Philosophia Natural. Alcala de Henares: Juan Gracian.
Petri, Nicolaus. 1605. Practicque om te Leeren Rekenen. Amsterdam.
Piero della Francesca. 1970. Trattato d'Abaco: Dal Codice Ashburnhamiano 280 (359*-291*) della Biblioteca Medicea Laurenziana di Firenze, edited by Arrrighi, Gino. Pisa: Domus Galilæana.
Renaldini, Carlo. 1655. Opus Mathematicum. Bononiæ: H.H. Ducij.
Ries, Adam. 1992. Coß, edited and commented by Kaunzner, Wolfgang and Wußing, Hans. Stuttgart: Teubner.
Rommevaux-Tani, Sabine. 2014. “Irrationalité des nombres, irrationalité des lignes selon Michael Stifel et Simon Stevin.” Revue d'Histoire des Mathématiques 20:171209.
Rudolff, Christoff. 1553. Die Coss Christoffs Rudolffs: Mit schönen Exempeln der Coss, edited by Stifel, Michael. Königsperg in Preussen Augezdecki.
Saidan, A. S. 1986. Tārīkh ʿilm al-jabr fī l-ʿālam al-ʿArabī; [History of Algebra in Medieval Islam], 2 vols. Kuwait: al-Majlis al-Waṭanī lil-Thaqāfah wa'l-Funūn wa'l-ādāb, Qism al-Turāth al-ʿArabī.
Salomone, Lucia, ed. 1984. É Chasi: della Terza Parte del XV Capitolo del Liber Abaci nella Trascelta a cura di Maestro Benedetto. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 10).
al-Samawʾal. 1972. Al-bāhir fī al-jabr, edited by Ahmad, Salah and Rashed, Roshdi. Damascus: Imp. de l'Université de Damas.
Scheubel, Johann. 1550. Evclidis Megarensis, Philosophi & Mathematici Excellentissimi, Sex Libri Priores, De Geometricis principijs. . .Algebrae Porro Regvlae. . . Basileae: Hervagius.
Schultze, Anton. 1600. Arithmetica Oder Rechenbuch. Liegnitz: Nicol Schneider.
Sesiano, Jacques. 1993. “La version latine médiévale de l'algèbre d'Abū Kāmil.” In Vestigia Mathematica: Studies in Medieval and Early Modern Mathematics in Honour of H.L.L. Busard, edited by Folkerts, Menso and Hogendijk, Jan P., 315452. Amsterdam: Rodopi.
Simi, Annalisa, ed. 1994. Trattato dell'alcibra amuchabile: Dal Codice Ricc. 2263 della Biblioteca Riccardiana di Firenze. Siena: Servizio Editoriale dell'Università di Siena (Quaderno 22).
Smyters, Anthoni. 1612. Arithmetica: Dat is, de Reken-Konste. Rotterdam: I. van Waesberghe.
Spinola, Daniele. 1647. La Bietolata. Dialogo dell'Attizzato Accademico Addormentato, Racceso, e della Fucina. Intorno alla Risposta alli Quesiti di Benedetto Maghetti Fatta da Donno Pietro Emmanuele. Macerata: Pietro Salui.
Staal, Frits. 2007. “Preface: The Generosity of Formal Languages.” Journal of Indian Philosophy 35:405412.
Stevin, Simon. 1585. L'Arithmetique. A Leyde: De l'imprimerie de Christophe Plantin.
Stifel, Michael. 1544. Arithmetica Integra. Norimbergæ: Iohan. Petreium.
Tartaglia, Nicolò. 1560. La Sesta Parte del General Trattato di Numeri, et Misure. Venetia: Curtio Troiano.
Viète, François. 1615. De Æquationum Recognitione et Emendatione Tractatus Duo. Paris.
Viète, François. [1646] 2001. Opera Mathematica. Recognita Francisci à Schooten. Vorwort und Register von Joseph E. Hofmann. Hildesheim: Georg Olms. (Facsimile of the 1646 edition.)
Viète, François. 1983. The Analytic Art: Nine Studies in Algebra, Geometry and Trigonometry from the Opus Restitutae Mathematicae Analyseos, seu Algebrâ Novâ. Translated by Witmer, T. Richard. Kent OH: Kent State University Press.
Wallis, John. 1685. A Treatise of Algebra, both Historical and Practical. London: John Playford.

Related content

Powered by UNSILO

Irrational “Coefficients” in Renaissance Algebra

  • Jeffrey A. Oaks (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.