Skip to main content Accessibility help
×
Home

Vitamin D status of 51–75-year-old Irish women: its determinants and impact on biochemical indices of bone turnover

  • Tom R Hill (a1), Maria M O'Brien (a1), Christel Lamberg-Allardt (a2), Jette Jakobsen (a3), Mairead Kiely (a1), Albert Flynn (a1) and Kevin D Cashman (a1) (a4)...

Abstract

Objectives

To assess the vitamin D status of Irish postmenopausal women during wintertime, and to examine its relationship with serum parathyroid hormone (PTH) and biochemical markers of bone turnover. In addition, the determinants of wintertime serum 25-hydroxyvitamin D (25OH–D) levels in these women were investigated.

Design

A cross-sectional observational study.

Setting

Cork City, Ireland (52°N).

Subjects

Ninety-five apparently healthy, free-living postmenopausal women (aged 51–75 years), not taking any medication and free from any condition likely to affect vitamin D status or calcium/bone metabolism.

Results

Forty-eight per cent and 7% of women had serum 25OH–D levels <50 nmol l−1 and <25 nmol l−1, respectively. 25OH–D levels in these women were positively associated with dietary calcium intake (P = 0.0002) and use of vitamin D-containing supplements (P = 0.031), and negatively associated with cigarette smoking (P = 0.027) and body mass index (BMI) (P = 0.030). Low serum 25OH-D levels (<50 nmol l−1) were associated (P <0.01) with elevated serum PTH levels. There were no significant differences in urinary pyridinium crosslinks or serum osteocalcin, biochemical indices of bone turnover, between subjects with serum 25OH–D levels above or below 50 nmol l−1.

Conclusions

A high proportion of Irish postmenopausal women had low vitamin D status (< 50 nmol l−1) during late wintertime, which appeared to lead to elevated levels of serum PTH but not of bone turnover markers. Use of regular low-dose supplemental vitamin D, meeting daily calcium recommendations, cessation of smoking and maintaining BMI in the normal range are important factors that could help maintain adequate vitamin D levels during wintertime in these women.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vitamin D status of 51–75-year-old Irish women: its determinants and impact on biochemical indices of bone turnover
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vitamin D status of 51–75-year-old Irish women: its determinants and impact on biochemical indices of bone turnover
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vitamin D status of 51–75-year-old Irish women: its determinants and impact on biochemical indices of bone turnover
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email k.cashman@ucc.ie

References

Hide All
1Parfitt, AM, Gallagher, JC, Heaney, RP, Johnston, CC, Neer, R, Whedon, GD. Vitamin D and bone health in the elderly. American Journal of Clinical Nutrition 1982; 36: 1014–31.
2Stamp, TC, Round, JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature 1974; 247: 563–5.
3McKenna, MJ. Differences in vitamin D, status between countries in young adults and the elderly. American Journal of Clinical Nutrition 1992; 93: 6977.
4Van der Wielen, RPJ, Lowik, MRH, Van Den Berg, H, De Groot, LCPGM, Haller, J, Moreiras, O, et al. Serum vitamin D concentrations among elderly people in Europe. Lancet 1995; 346: 207–10.
5Lips, P, Duong, T, Oleksik, A, Black, D, Cummings, S, Cox, D, et al. A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. Journal of Clinical Endocrinology and Metabolism 2001; 86: 1212–21.
6Webb, AR, Kline, L, Holick, MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3 : exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. Journal of Clinical Endocrinology and Metabolism 1988; 67: 373–8.
7Food and Agriculture Organization (FAO)/World Health Organization (WHO). Human Vitamin and Mineral Requirements . Report of the Joint FAO/WHO Expert Consultation, Bangkok, Thailand. Rome: Food and Nutrition Division, FAO, 1998; Also available at http://ftp.fao.org/es/esn/nutrition.
8Ovesen, L, Andersen, R, Jakobsen, J. Geographical differences in vitamin D status, with particular reference to European countries. Proceedings of the Nutrition Society 2003; 62: 813–21.
9Hill, TR, O'Brien, MM, Kiely, M, Flynn, A, Cashman, KD. Vitamin D intakes in 18–64 year-old Irish adults. European Journal of Clinical Nutrition 2004; 58: 1509–17.
10Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocrine Reviews 2001; 22: 477501.
11Lips, P. Which circulating level of 25-hydroxyvitamin D is appropriate?. Journal of Steroid Biochemistry and Molecular Biology 2004; 8990: 611–4.
12Hill, T, Collins, A, O'Brien, MM, Kiely, M, Flynn, A, Cashman, KD. Vitamin D intake and status in Irish postmenopausal women. European Journal of Clinical Nutrition 2005; 59: 404–10.
13Krall, EA, Sahyoun, N, Tannenbaum, S, Dallal, GE, Dawson-Hughes, B. Effect of vitamin D intake on seasonal variations in parathyroid hormone secretion in postmenopausal women. New England Journal of Medicine 1989; 321: 1777–83.
14Chapuy, MC, Preziosi, P, Maamer, M, Arnaud, S, Galan, P, Hercberg, S, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporosis International 1997; 7: 439–43.
15Dawson-Hughes, B, Harris, SS, Dallal, GE. Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. American Journal of Clinical Nutrition 1997; 65: 6771.
16McKenna, MJ, Freaney, R. Secondary hyperparathyroidism in the elderly: means to defining hypovitaminosis D. Osteoporosis International 1998; 8: S3–6.
17Heaney, RP, Dowell, MS, Hale, CA, Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. Journal of the American College of Nutrition 2003; 22: 142–6.
18Zittermann, A. Vitamin D in preventive medicine: are we ignoring the evidence?. British Journal of Nutrition 2003; 89: 552–72.
19Holick, MF. Vitamin D: importance in the prevention of cancers, type-1 diabetes, heart disease and osteoporosis. American Journal of Clinical Nutrition 2004; 79: 362–71.
20Bates, CJ, Carter, GD, Mishra, GD, O'Shea, D, Jones, J, Prentice, A. In a population study, can parathyroid hormone aid the definition of adequate vitamin D status? A study of people aged 65 years and over from the British National Diet and Nutrition Survey. Osteoporosis International 2003; 14: 152–9.
21Vieth, R, Ladak, Y, Walfish, PG. Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. Journal of Clinical Endocrinology and Metabolism 2003; 88: 185–91.
22MacLaughlin, J, Holick, MF. Aging decreases the capacity of human skin to produce vitamin D3. Journal of Clinical Investigation 1985; 76: 1536–8.
23Sherman, SS, Hollis, BW, Tobin, JD. Vitamin D status and related parameters in a healthy population: the effects of age, sex and season. Journal of Clinical Endocrinology and Metabolism 1990; 71: 405–13.
24Harris, SS, Soteriades, E, Coolidge, JA-S, Mudgal, S, Dawson-Hughes, B. Vitamin D insufficiency and hyperparathyroidism in a low income, multiracial, elderly population. Journal of Clinical Endocrinology and Metabolism 2000; 85: 4125–30.
25Arunabh, S, Pollack, S, Yeh, J, Aloia, JF. Body fat content and 25-hydroxyvitamin D levels in healthy women. Journal of Clinical Endocrinology and Metabolism 2003; 88: 157–61.
26Burnand, B, Sloutskis, D, Gianoli, F, Cornuz, J, Rickenbach, M, Paccaud, F, et al. Serum 25-hydroxyvitamin D: distribution and determinants in the Swiss population. American Journal of Clinical Nutrition 1992; 56: 537–42.
27Parikh, SJ, Edelman, M, Uwaifo, GI, Freedman, RJ, Semega-Janneh, M, Reynolds, J, et al. The relationship between obesity and serum 1,25-dihydroxyvitamin D concentrations in healthy adults. Journal of Clinical Endocrinology and Metabolism 2004; 89: 1196–9.
28Brot, C, Jorgensen, NR, Sørensen, OH. The influence of smoking on vitamin D status and calcium metabolism. European Journal of Clinical Nutrition 1999; 53: 920–6.
29Kiely, M, Flynn, A, Harrington, KE, Robson, PJ, O'Connor, N, Hannon, EM, et al. The efficacy and safety of nutritional supplement use in a representative sample of adults in the North/South Ireland Food Consumption Survey. Public Health Nutrition 2001; 4: 1089–97.
30Food and Nutrition Board, Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D and Fluoride. Washington,DC: National Academy Press, 1997.
31Ministry of Agriculture, Fisheries and Food. Food Portion Sizes. London: The Stationery Office, 1997.
32Heaney, RP, Weaver, CM. Calcium and vitamin D. Endocrinology and Metabolism Clinics of North America 2003; 32: 181–94.
33Pratt, DA, Daniloff, Y, Duncan, A, Robins, SP. Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Analytical Biochemistry 1992; 207: 168–75.
34Calabresi, E, Lasagni, L, Franceschelli, F, Bartolini, L, Serio, M, Brandi, ML. Use of an internal standard to measure pyridinoline and deoxypyridinoline in urine. Clinical Chemistry 1994; 40: 336–7.
35Robins, SP, Stead, DA, Duncan, A. Precautions in using an internal standard to measure pyridinoline and deoxypyridinoline in urine. Clinical Chemistry 1994; 40: 2322–3.
36Colwell, A, Russell, RG, Eastell, R. Factors affecting the assay of urinary 3-hydroxypyridinium crosslinks of collagen as markers of bone resorption. European Journal of Clinical Investigation 1993; 23: 341–9.
37McKenna, M, Freaney, R, Keating, D, Muldowney, FP. The prevalence and management of vitamin D deficiency in an acute geriatric unit. Irish Medical Journal 1981; 74: 336–8.
38McKenna, MJ, Freaney, R, Meade, A, Muldowney, FP. Hypovitaminosis D and elevated serum alkaline phosphatase in elderly Irish people. American Journal of Clinical Nutrition 1985; 41: 101–9.
39Meade, A, Moloney, M, O'Keeffe, D. Prevalence of vitamin D deficiency in the elderly in two rural areas in Ireland. Irish Medical Journal 1986; 79: 359.
40Freaney, R, McBrinn, Y, McKenna, MJ. Secondary hyperparathyroidism in elderly people: combined effect of renal insufficiency and vitamin D deficiency. American Journal of Clinical Nutrition 1993; 58: 187–91.
41Andersen, R, Mølgaard, C, Skivgaard, LT, Brot, C, Cashman, KD, Chabros, E, et al. Prevalence of hypovitaminosis D in two risk groups in European countries. European Journal of Clinical Nutrition 2005; 59: 533–41.
42Dawson-Hughes, B, Heaney, RP, Holick, MF, Lips, P, Meunier, PJ, Vieth, R. Estimates of optimal vitamin D status. Osteoporosis International 2005; 16: 713–6.
43Carter, GD, Carter, R, Jones, J, Berry, J. How accurate are assays for 25-hydroxyvitamin D? Data from the international vitamin D external quality assessment scheme. Clinical Chemistry 2004; 50: 2195–7.
44Lamberg-Allardt, CJ, Outila, TA, Kärkkäinen, MU, Rita, HJ, Valsta, LM. Vitamin D deficiency and bone health in healthy adults in Finland: could this be a concern in other parts of Europe?. Journal of Bone Mineral Research 2001; 16: 2066–73.
45Ilich, JZ, Brownbill, RA, Tamborini, L, Crncevic-Orlic, Z. To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women?. Journal of the American College of Nutrition 2002; 21: 536–44.
46Scragg, R, Holdaway, I, Jackson, R, Lim, T. Plasma 25–hydroxyvitamin D3 and its relation to physical activity and other heart disease risk factors in the general population. Annals of Epidemiology 1992; 2: 697703.
47Jacques, PF, Felson, DT, Tucker, KL, Mahnken, B, Wilson, PWF, Rosenberg, IH, et al. Plasma 25-hydroxyvitamin D and its determinants in an elderly population sample. American Journal of Clinical Nutrition 1997; 66: 929–36.
48Liel, Y, Shany, S, Schwartz, B. Interaction between estrogen and vitamin D–endocrine system: a potential addition to the unitary model of osteoporosis. Journal of Bone Mineral Research 1998; 13: 1954–5.
49Wortsman, J, Matsuoka, LY, Chen, TC, Lu, Z, Holick, MF. Decreased bioavailability of vitamin D in obesity. American Journal of Clinical Nutrition 2000; 72: 690–3.
50Need, AG, Morris, HA, Horowitz, M, Nordin, C. Effects of skin thickness, age, body fat, and sunlight on serum 25–hydroxyvitamin D. American Journal of Clinical Nutrition 1993; 58: 882–5.
51Holick, MF. Environmental factors that influence the cutaneous production of vitamin D. American Journal of Clinical Nutrition 1995; 61: 638S–45S.
52Terenetskaya, I. Two methods for direct assessment of the vitamin D synthetic capacity of sunlight and artificial UV sources. Journal of Steroid Biochemistry and Molecular Biology 2004; 8990: 623–6.
53Kinyamu, HK, Gallagher, JC, Rafferty, KA, Balhorn, KE. Dietary calcium and vitamin D intake in elderly women: effect on serum parathyroid hormone and vitamin D metabolites. American Journal of Clinical Nutrition 1998; 67: 342–8.
54Sowers, MR, Wallace, RB, Hollis, BW, Lemke, JH. Parameters related to 25-OH-D levels in a population-based study of women. American Journal of Clinical Nutrition 1986; 43: 621–8.
55Ooms, ME, Lips, P, Roos, JC, van der Vijgh, WJ, Popp-Snijders, C, Bezemer, PD, et al. Vitamin D status and sex hormone binding globulin: determinants of bone turnover and bone mineral density in elderly women. Journal of Bone Mineral Research 1995; 10: 1177–84.
56Sahota, O, Masud, T, San, P, Hosking, DJ. Vitamin D insufficiency increases bone turnover markers and enhances bone loss at the hip in patients with established vertebral osteoporosis. Clinical Endocrinology 1999; 51: 217–21.
57Mezquita-Raya, P, Munoz-Torres, M, Luna, JD, Luna, V, Lopez-Rodriguez, F, Torres-Vela, E, et al. Relation between vitamin D insufficiency, bone density, and bone metabolism in healthy postmenopausal women. Journal of Bone Mineral Research 2002; 16: 1408–15.
58Jesudason, D, Need, AG, Horowitz, M, O'Loughlin, PD, Morris, HA, Nordin, BE. Relationship between serum 25-hydroxyvitamin D and bone resorption markers in vitamin D insufficiency. Bone 2002; 31: 626–30.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed