Skip to main content Accessibility help
×
Home

The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil

  • Maria Laura da Costa Louzada (a1), Camila Zancheta Ricardo (a1) (a2), Euridice Martinez Steele (a1) (a3), Renata Bertazzi Levy (a1) (a2), Geoffrey Cannon (a1) and Carlos Augusto Monteiro (a1) (a2)...

Abstract

Objective

To estimate the dietary share of ultra-processed foods and to determine its association with the overall nutritional quality of diets in Brazil.

Design

Cross-sectional.

Setting

Brazil.

Subjects

A representative sample of 32 898 Brazilians aged ≥10 years was studied. Food intake data were collected. We calculated the average dietary content of individual nutrients and compared them across quintiles of energy share of ultra-processed foods. Then we identified nutrient-based dietary patterns, and evaluated the association between quintiles of dietary share of ultra-processed foods and the patterns’ scores.

Results

The mean per capita daily dietary energy intake was 7933 kJ (1896 kcal), with 58·1 % from unprocessed or minimally processed foods, 10·9 % from processed culinary ingredients, 10·6 % from processed foods and 20·4 % from ultra-processed foods. Consumption of ultra-processed foods was directly associated with high consumption of free sugars and total, saturated and trans fats, and with low consumption of protein, dietary fibre, and most of the assessed vitamins and minerals. Four nutrient-based dietary patterns were identified. ‘Healthy pattern 1’ carried more protein and micronutrients, and less free sugars. ‘Healthy pattern 2’ carried more vitamins. ‘Healthy pattern 3’ carried more dietary fibre and minerals and less free sugars. ‘Unhealthy pattern’ carried more total, saturated and trans fats, and less dietary fibre. The dietary share of ultra-processed foods was inversely associated with ‘healthy pattern 1’ (−0·16; 95 % CI −0·17, −0·15) and ‘healthy pattern 3’ (−0·18; 95 % CI −0·19, −0·17), and directly associated with ‘unhealthy pattern’ (0·17; 95 % CI 0·15, 0·18).

Conclusions

Dietary share of ultra-processed foods determines the overall nutritional quality of diets in Brazil.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email maria.laura.louzada@gmail.com

References

Hide All
1. Monteiro, CA (2009) Nutrition and health. The issue is not food, nor nutrients, so much as processing. Public Health Nutr 12, 729731.
2. Ludwig, DS (2011) Technology, diet, and the burden of chronic disease. JAMA 305, 13521353.
3. Stuckler, D, McKee, M, Ebrahim, S et al. (2012) Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. PLoS Med 9, e1001235.
4. Moodie, R, Stuckler, D, Monteiro, C et al. (2013) Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 381, 670679.
5. Moubarac, J-C, Parra, D, Cannon, G et al. (2014) Food classification systems based on food processing: significance and implications for policies and actions. A systematic literature review and assessment. Curr Obes Rep 3, 256272.
6. Food and Agriculture Organization of the United Nations (2015) Guidelines on the Collection of Information on Food Processing through Food Consumption Surveys. Rome: FAO.
7. Monteiro, CA, Cannon, G, Moubarac, JC et al. (2017) The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr (Epublication ahead of print version).
8. Monteiro, CA, Levy, RB, Claro, RM et al. (2011) Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr 14, 513.
9. Moubarac, JC, Martins, AP, Claro, RM et al. (2012) Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr 16, 22402248.
10. Crovetto, MM, Uauy, R, Martins, AP et al. (2014) Household availability of ready-to-consume food and drink products in Chile: impact on nutritional quality of the diet. Rev Med Chil 142, 850858 (in Spanish).
11. Louzada, ML, Martins, AP, Canella, D. et al. (2015) Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica 49, 38.
12. Louzada, ML, Martins, AP, Canella, D et al. (2015) Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica 49, 45.
13. Steele, E, Baraldi, LG, Louzada, ML et al. (2015) Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 5, e009892.
14. Cespedes, EM & Hu, FB (2015) Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr 101, 899900.
15. Farchi, G, Mariotti, S, Menotti, A et al. (1989) Diet and 20-y mortality in two rural population groups of middle-aged men in Italy. Am J Clin Nutr 50, 10951103.
16. Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
17. Abdullah, A (2015) The double burden of undernutrition and overnutrition in developing countries: an update. Curr Obes Rep 4, 337349.
18. Barquera, S, Pedroza-Tobias, A & Medina, C (2016) Cardiovascular diseases in mega-countries: the challenges of the nutrition, physical activity and epidemiologic transitions, and the double burden of disease. Curr Opin Lipidol 27, 329344.
19. Araujo, MC, Bezerra, IN, Barbosa, FS et al. (2013) Macronutrient consumption and inadequate micronutrient intake in adults. Rev Saude Publica 47, 177189.
20. Fisberg, RM, Marchioni, DM, Castro, MA et al. (2013) Inadequate nutrient intake among the Brazilian elderly: National Dietary Survey 2008–2009. Rev Saude Publica 47, 222230.
21. Veiga, GV, Costa, RS, Araújo, MC et al. (2013) Inadequate nutrient intake in Brazilian adolescents. Rev Saude Publica 47, 212221.
22. Instituto Brasileiro de Geografia e Estatística (2011) Análise do Consumo Alimentar Pessoal no Brasil. Rio de Janeiro: IBGE.
23. Instituto Brasileiro de Geografia e Estatística (2011) Tabela de Medidas Referidas para os Alimentos Consumidos no Brasil. Rio de Janeiro: IBGE.
24. Instituto Brasileiro de Geografia e Estatística (2011) Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil. Rio de Janeiro: IBGE.
25. World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO Expert Consultation. WHO Technical Report Series no. 916. Geneva: WHO.
26. Martinez, ME, Marshall, JR & Sechrest, L (1998) Invited commentary: Factor analysis and the search for objectivity. Am J Epidemiol 148, 1719.
27. Castro, MA, Baltar, VT, Selem, SS et al. (2015) Empirically derived dietary patterns: interpretability and construct validity according to different factor rotation methods. Cad Saude Publica 31, 298310.
28. Mozaffarian, D, Aro, A & Willett, W (2009) Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr 63, 521.
29. World Health Organization (2009) Fats and Fatty Acids in Human Nutrition. Geneva: WHO.
30. McKeown, NM, Meigs, JB, Liu, S et al. (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27, 538546.
31. Pereira, MA, O’Reilly, E, Augustsson, K et al. (2004) Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med 164, 370376.
32. Johnson, RK, Appel, LJ, Brands, M et al. (2009) Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation 120, 10111020.
33. Canadian Heart and Stroke Foundation (2014) Canadian Heart and Stroke Foundation Position Statement. Toronto: CHSF; available at http://www.heartandstroke.ca/-/media/pdf-files/canada/2017-position-statements/sugar-ps-eng.ashx?la=en&hash=2A10F431AFBCEC72AD9643EA376AAE6A0C370948
34. US Department of Agriculture (2015) Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: USDA.
35. World Health Organization (2015) Sugars Intake for Adults and Children. Geneva: WHO.
36. World Health Organization (2007) Protein and Amino Acid Requirements in Human Nutrition. Geneva: WHO.
37. Gosby, AK, Conigrave, AD, Raubenheimer, D et al. (2014) Protein leverage and energy intake. Obes Rev 15, 183191.
38. Raubenheimer, D, Machovsky-Capuska, GE, Gosby, AK et al. (2015) Nutritional ecology of obesity: from humans to companion animals. Br J Nutr 113, 2639.
39. World Health Organization (2004) Vitamin and Mineral Requirements in Human Nutrition. Geneva: WHO.
40. Barcelos, GT, Rauber, F & Vitolo, MR (2014) Produtos processados e ultraprocessados e ingestão de nutrientes em crianças. Rev Cienc Saude 7, 155161.
41. Bielemann, RM, Santos Motta, JV, Minten, GC et al. (2015) Consumption of ultra-processed foods and their impact on the diet of young adults. Rev Saude Publica 49, 28.
42. Luiten, CM, Steenhuis, IH, Eyles, H et al. (2016) Ultra-processed foods have the worst nutrient profile, yet they are the most available packaged products in a sample of New Zealand supermarkets. Public Health Nutr 19, 530538.
43. Vandevijvere, S, Monteiro, C, Krebs-Smith, SM et al. (2013) Monitoring and benchmarking population diet quality globally: a step-wise approach. Obes Rev 14, 135149.
44. Pan American Health Organization (2016) Nutrient Profile Model. Washington, DC: PAHO.
45. Canella, DS, Levy, RB, Martins, AP et al. (2014) Ultra-processed food products and obesity in Brazilian households (2008–2009). PLoS One 9, e92752.
46. Louzada, ML, Baraldi, LG, Steele, EM et al. (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med 81, 915.
47. Juul, F & Hemmingsson, E (2015) Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr 18, 30963107.
48. Mendonca, RD, Pimenta, AM, Gea, A et al. (2016) Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr 104, 14331440.
49. Mendonça, R, Lopes, AC, Pimenta, AM et al. (2017) Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. Am J Hypertens 30, 358366.
50. Tavares, L, Fonseca, S, Garcia Rosa, L et al. (2012) Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutr 15, 8287.
51. Rauber, F, Campagnolo, P, Hoffman, D et al. (2015) Consumption of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis 25, 116122.
52. Crovetto, M & Uauy, R (2012) Changes in processed food expenditure in the population of Metropolitan Santiago in the last twenty years. Rev Med Chil 140, 305312 (in Spanish).
53. Martins, AP, Levy, RB, Claro, RM et al. (2013) Increased contribution of ultra-processed food products in the Brazilian diet (1987–2009). Rev Saude Publica 47, 656665.
54. Moubarac, JC, Batal, M, Martins, AP et al. (2014) Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res 75, 1521.
55. Monteiro, CA, Moubarac, J-C, Cannon, G et al. (2013) Ultra-processed products are becoming dominant in the global food system. Obes Rev 14, 2128.

Keywords

The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil

  • Maria Laura da Costa Louzada (a1), Camila Zancheta Ricardo (a1) (a2), Euridice Martinez Steele (a1) (a3), Renata Bertazzi Levy (a1) (a2), Geoffrey Cannon (a1) and Carlos Augusto Monteiro (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed