Skip to main content Accessibility help
×
Home

Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women

  • Minxue Shen (a1) (a2) (a3), Shazia Hira Chaudhry (a2) (a3) (a4), Amanda J MacFarlane (a5), Laura Gaudet (a2) (a3), Graeme N Smith (a6), Marc Rodger (a3) (a4) (a7), Ruth Rennicks White (a2) (a3), Mark C Walker (a2) (a3) and Shi Wu Wen (a1) (a2) (a3) (a4)...

Abstract

Objective

To examine the association between BMI and folate concentrations in serum and red blood cells (RBC) in pregnant women.

Design

A cross-sectional comparison of folate concentrations in serum and RBC sampled simultaneously from the same individual.

Setting

The Ottawa Hospital and Kingston General Hospital, Ontario, Canada.

Subjects

Pregnant women recruited between 12 and 20 weeks of gestation.

Results

A total of 869 pregnant women recruited from April 2008 to April 2009 were included in the final analysis. Serum folate was inversely associated and RBC folate positively associated with BMI, after adjusting for folic acid supplementation, age, gestational age at blood sample collection, race, maternal education, annual income, smoking and MTHFR 677C→T genotype. In stratified analyses, this differential association was significant in women with the MTHFR CC variant. In women with the CT and TT variants, the differential associations were in the same direction but not significant. Folic acid supplementation during pregnancy did not alter the differential association of BMI with serum and RBC folate concentration. This indicates that the current RBC folate cut-off approach for assessing risk of neural tube defects in obese women may be limited.

Conclusions

BMI is inversely associated with serum folate and positively associated with RBC folate in pregnant women, especially for those with the MTHFR CC variant.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email swwen@ohri.ca

References

Hide All
1. Kimmons, JE, Blanck, HM, Tohill, BC et al. (2006) Associations between body mass index and the prevalence of low micronutrient levels among US adults. Med Gen Med 8, 59.
2. Bird, JK, Ronnenberg, AG, Choi, SW et al. (2015) Obesity is associated with increased red blood cell folate despite lower dietary intakes and serum concentrations. J Nutr 145, 7986.
3. Mojtabai, R (2004) Body mass index and serum folate in childbearing age women. Eur J Epidemiol 19, 10291036.
4. Mahabir, S, Ettinger, S, Johnson, L et al. (2008) Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur J Clin Nutr 62, 644650.
5. Tinker, SC, Hamner, HC, Berry, RJ et al. (2012) Does obesity modify the association of supplemental folic acid with folate status among nonpregnant women of childbearing age in the United States? Birth Defects Res Part A Clin Mol Teratol 94, 749755.
6. Stern, SJ, Matok, I, Kapur, B et al. (2011) A comparison of folic acid pharmacokinetics in obese and nonobese women of childbearing age. Ther Drug Monit 33, 336340.
7. da Silva, VR, Hausman, DB, Kauwell, GP et al. (2013) Obesity affects short-term folate pharmacokinetics in women of childbearing age. Int J Obes (Lond) 37, 16081610.
8. Higgins, JR, Quinlivan, EP, McPartlin, J et al. (2000) The relationship between increased folate catabolism and the increased requirement for folate in pregnancy. BJOG 107, 11491154.
9. Walker, MC, Smith, GN, Perkins, SL et al. (1999) Changes in homocysteine levels during normal pregnancy. Am J Obstet Gynecol 180, 660664.
10. Açkurt, F, Wetherilt, H, Löker, M et al. (1995) Biochemical assessment of nutritional status in pre- and post-natal Turkish women and outcome of pregnancy. Eur J Clin Nutr 49, 613622.
11. Walker, MC, Finkelstein, SA, Rennicks White, R et al. (2011) The Ottawa and Kingston (OaK) Birth Cohort: development and achievements. J Obstet Gynaecol Can 33, 11241133.
12. Di Cristofaro, J, Silvy, M, Chiaroni, J et al. (2010) Single PCR multiplex SNaPshot reaction for detection of eleven blood group nucleotide polymorphisms: optimization, validation, and one year of routine clinical use. J Mol Diagn 12, 453460.
13. Ferraro, ZM, Barrowman, N, Prud’homme, D et al. (2012) Excessive gestational weight gain predicts large for gestational age neonates independent of maternal body mass index. J Matern Fetal Neonatal Med 25, 538542.
14. Kim, H, Hwang, JY, Kim, KN et al. (2012) Relationship between body-mass index and serum folate concentrations in pregnant women. Eur J Clin Nutr 66, 136138.
15. Tsang, BL, Devine, OJ, Cordero, AM et al. (2015) Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C→T polymorphism and blood folate concentrations: a systematic review and meta-analysis of trials and observational studies. Am J Clin Nutr 101, 12861294.
16. Bagley, PJ & Selhub, J (1998) A common mutation in the methylenetetrahydrofolate reductase gene is associated with an accumulation of formylated tetrahydrofolates in red blood cells. Proc Natl Acad Sci U S A 95, 1321713220.
17. Scagliusi, FB, Polacow, VO, Artioli, GG et al. (2003) Selective underreporting of energy intake in women: magnitude, determinants, and effect of training. J Am Diet Assoc 103, 13061313.
18. Scagliusi, FB, Ferriolli, E, Pfrimer, K et al. (2009) Characteristics of women who frequently under report their energy intake: a doubly labelled water study. Eur J Clin Nutr 63, 11921199.
19. Prinz-Langenohl, R, Brönstrup, A, Thorand, B et al. (1999) Availability of food folate in humans. J Nutr 129, 913916.
20. Babu, S & Srikantia, SG (1976) Availability of folates from some foods. Am J Clin Nutr 29, 376379.
21. Obeid, R, Koletzko, B & Pietrzik, K (2014) Critical evaluation of lowering the recommended dietary intake of folate. Clin Nutr 33, 252259.
22. Institute of Medicine (2009) Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: National Academies Press, National Academy of Sciences.
23. Bailey, LB (2009) Folate in Health and Disease, 2nd ed. Boca Raton, FL: CRC Press.
24. Said, HM, Chatterjee, N, Haq, RU et al. (2000) Adaptive regulation of intestinal folate uptake: effect of dietary folate deficiency. Am J Physiol Cell Physiol 279, C1889C1895.
25. Subramanian, VS, Chatterjee, N & Said, HM (2003) Folate uptake in the human intestine: promoter activity and effect of folate deficiency. J Cell Physiol 196, 403408.
26. Ashokkumar, B, Mohammed, ZM, Vaziri, ND et al. (2007) Effect of folate oversupplementation on folate uptake by human intestinal and renal epithelial cells. Am J Clin Nutr 86, 159166.
27. Yasuda, S, Hasui, S, Yamamoto, C et al. (2008) Placental folate transport during pregnancy. Biosci Biotechnol Biochem 72, 22772284.
28. Solanky, N, Requena Jimenez, A, D’Souza, SW et al. (2010) Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 31, 134143.
29. McMahon, DM, Liu, J, Zhang, H et al. (2013) Maternal obesity, folate intake, and neural tube defects in offspring. Birth Defects Res Part A Clin Mol Teratol 97, 115122.
30. Gao, LJ, Wang, ZP, Lu, QB et al. (2013) Maternal overweight and obesity and the risk of neural tube defects: a case–control study in China. Birth Defects Res Part A Clin Mol Teratol 97, 161165.
31. Shaw, GM, Velie, EM & Schaffer, D (1996) Risk of neural tube defect-affected pregnancies among obese women. JAMA 275, 10931096.
32. Waller, DK, Shaw, GM, Rasmussen, SA et al. (2007) Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med 161, 745750.
33. Parker, SE, Yazdy, MM, Tinker, SC et al. (2013) The impact of folic acid intake on the association among diabetes mellitus, obesity, and spina bifida. Am J Obstet Gynecol 209, 239.e1e8.
34. World Health Organization (2015) Optimal Serum and Red Blood Cell Folate Concentrations in Women of Reproductive Age for Prevention of Neural Tube Defects. Geneva: WHO.
35. Daly, LE, Kirke, PN, Molloy, A et al. (1995) Folate levels and neural tube defects. Implications for prevention. JAMA 274, 16981702.
36. Shi, Y, De Groh, M & MacFarlane, AJ (2014) Socio-demographic and lifestyle factors associated with folate status among non-supplement-consuming Canadian women of childbearing age. Can J Public Health 105, e166e171.
37. Lisonkova, S & Joseph, KS (2013) Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am J Obstet Gynecol 209, 544.e1544.e12.
38. Roberts, JM, Bodnar, LM, Patrick, TE et al. (2011) The role of obesity in preeclampsia. Pregnancy Hypertens 1, 616.
39. Baci, Y, Üstüner, I, Keskin, HL et al. (2013) Effect of maternal obesity and weight gain on gestational diabetes mellitus. Gynecol Endocrinol 29, 133136.
40. Chu, SY, Callaghan, WM, Kim, SY et al. (2007) Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care 30, 20702076.
41. Rasmussen, SA, Chu, SY, Kim, SY et al. (2008) Maternal obesity and risk of neural tube defects: a metaanalysis. Am J Obstet Gynecol 198, 611619.
42. Czeizel, A & Dudas, I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327, 18321835.
43. MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338, 132137.
44. Wen, SW, Champagne, J, Rennicks White, R et al. (2013) Effect of folic acid supplementation in pregnancy on preeclampsia: the folic acid clinical trial study. J Pregnancy 2013, 294312.
45. Wen, SW, Chen, XK, Rodger, M et al. (2008) Folic acid supplementation in early second trimester and the risk of preeclampsia. Am J Obstet Gynecol 198, 45.e1e7.
46. Pei, L, Zhu, H, Zhu, J et al. (2006) Genetic variation of infant reduced folate carrier (A80G) and risk of orofacial defects and congenital heart defects in China. Ann Epidemiol 16, 352356.
47. Feng, Y, Wang, S, Chen, R et al. (2015) Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a meta-analysis of epidemiological observational studies. Sci Rep 5, 8506.

Keywords

Related content

Powered by UNSILO

Serum and red-blood-cell folate demonstrate differential associations with BMI in pregnant women

  • Minxue Shen (a1) (a2) (a3), Shazia Hira Chaudhry (a2) (a3) (a4), Amanda J MacFarlane (a5), Laura Gaudet (a2) (a3), Graeme N Smith (a6), Marc Rodger (a3) (a4) (a7), Ruth Rennicks White (a2) (a3), Mark C Walker (a2) (a3) and Shi Wu Wen (a1) (a2) (a3) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.