Skip to main content Accessibility help
×
Home

Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women

  • Lisa M Bodnar (a1) (a2), Anna Maria Siega-Riz (a1) (a2) (a3), Lenore Arab (a1) (a4), Kim Chantala (a2) and Thad McDonald (a5)...

Abstract

Objective:

Pregnancy and postpartum iron status is of great public health importance, yet few studies have examined predictors of haemoglobin (Hb) concentration during this time. We identified predictors of Hb from 24 weeks' gestation until delivery and from 4 to 25 weeks postpartum.

Design:

Blood was drawn as many as four times during care: at the initial visit, at 24–29 weeks' gestation, at delivery and postpartum. A longitudinal, multivariable linear regression model was used to predict Hb concentration.

Setting:

A public health clinic in Raleigh, North Carolina.

Subjects:

n = 520 women who participated in the Iron Supplementation Study.

Results:

Hb concentration at the previous blood draw, short stature, non-Hispanic white ethnicity/race, > 12 years of education and smoking were positive predictors of pregnancy and postpartum Hb concentrations. Iron supplement use was a positive predictor, while inadequate weight gain and severe nausea/vomiting were negative predictors of gestational Hb. A high infant birth weight and postpartum haemorrhage were negative predictors of postpartum Hb. Pre-pregnancy body mass index had a slight positive relationship with gestational Hb, but had a strong negative relationship with postpartum Hb. The longitudinal model also confirmed the typical pattern of gestational Hb concentration. As the number of weeks between the initial visit and the 24- to 29-week visit increased, Hb at 24–29 weeks' gestation decreased. As gestational age increased from 24 weeks until delivery, Hb concentration increased as well.

Conclusions:

The predictors identified here could be used in clinical settings to target high–risk women for intervention.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email bodnar@mwri.magee.edu

References

Hide All
1Bodnar, LM, Scanlon, KS, Freedman, DS, Siega-Riz, AM, Cogswell, ME. High prevalence of postpartum anemia among low-income women in the United States. American Journal of Obstetrics and Gynecology 2001; 185: 438–43.
2Bodnar, LM, Cogswell, ME, Scanlon, KS. Low income postpartum women are at risk of iron deficiency. Journal of Nutrition 2002; 132: 2299–303.
3Centers for Disease Control and Prevention (CDC). Pregnancy Nutrition Surveillance, 1996 Full Report. Atlanta, GA: US Department of Health and Human Services, CDC, 1998.
4Haas, JD, Brownlie, T. Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. Journal of Nutrition 2001; 131: 676S–88S.
5Bruner, AB, Joffe, A, Duggan, AK, Casella, JF, Brandt, J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron–deficient adolescent girls. Lancet 1996; 348: 992–6.
6Ballin, A, Berar, M, Rubinstein, U, Kleter, Y, Hershkovitz, A, Meytes, D. Iron state in female adolescents. American Journal of Diseases of Children 1992; 146: 803–5.
7Rasmussen, KM. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation, and perinatal mortality? Journal of Nutrition 2001; 131: 590S601S.
8Yip, R, Dallman, PR. The roles of inflammation and iron deficiency as causes of anemia. American Journal of Clinical Nutrition 1988; 48: 1295–300.
9Institute of Medicine, Food and Nutrition Board. Nutrition during Pregnancy. Washington, DC: National Academy Press, 1990.
10Taylor, DJ, Lind, T. Red cell mass during and after normal pregnancy. British Journal of Obstetrics and Gynaecology 1979; 86: 364–70.
11Blackburn, ST, Loper, DL. Maternal, Fetal, and Neonatal Physiology: A Clinical Perspective. Philadelphia, PA: WB Saunders, 1992.
12Friis, H, Gomo, E, Kæstel, P, Ndhlovu, P, Nyazema, N, Krarup, H, et al. HIV and other predictors of serum folate, serum ferritin, and hemoglobin in pregnancy: a cross–sectional study in Zimbabwe. American Journal of Clinical Nutrition 2001; 73: 1066–73.
13Robinson, S, Godfrey, K, Denne, J, Cox, V. The determinants of iron status in early pregnancy. British Journal of Nutrition 1998; 79: 249–55.
14Centers for Disease Control and Prevention. Recommendations to prevent and control iron deficiency in the United States. Morbidity and Mortality Weekly Report 1998; 47(RR-3).
15US Department of Health and Human Services Resources. Healthy People 2010: National Health Promotion and Disease Prevention Objectives, [online]. Available at http://www.health.gov/healthypeople/Publications/. Accessed 21 January 2003.
16Siega-Riz, AM, Hartzema, A, Thorp, J, McDonald, T, Turnbull, C, Cogswell, ME. Selective versus universal iron supplementation during pregnancy: prevention of third-trimester anemia. FASEB Journal 2001; 15: A974.
17Bodnar, LM, Davidian, M, Siega-Riz, AM, Tsiatis, AA. Marginal structural models for analyzing causal effects of time-dependent treatments: an application in perinatal epidemiology. American Journal of Epidemiology 2004; in press.
18Siega-Riz, AM, Adair, LS, Hobel, CJ. Maternal underweight status and inadequate rate of weight gain during the third trimester of pregnancy increases the risk of preterm delivery. Journal of Nutrition 1996; 126: 146–53.
19Zeger, SL, Liang, KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121–30.
20Akaike, H. Likelihood of model and information criteria. Journal of Econometrics 1981; 16: 314.
21American College of Obstetricians and Gynecologists. Postpartum hemorrhage [;ACOG Educational Bulletin, No. 243, January 1998]. International Journal of Gynaecology and Obstetrics 1998; 61: 7986.
22Bothwell, TH, Charlton, RW, Cook, JD, Finch, CA. Iron Metabolism in Man. Oxford: Blackwell Scientific Publications, 1979; 576.
23Spellacy, WN, Miller, S, Winegar, A, Peterson, PQ. Macrosomia – maternal characteristics and infant complications. Obstetrics and Gynecology 1985; 66: 158–61.
24Zetterstrom, J, Lopez, A, Anzen, B, Norman, M, Holstrom, B, Mellgren, A. Anal sphincter tears at vaginal delivery: risk factors and clinical outcome of primary repair. Obstetrics and Gynecology 1999; 94: 21–8.
25Turner, MJ, Rasmussen, MJ, Turner, ME, Boylan, PC, MacDonald, D, Stronge, JM. The influence of birth weight on labour in nulliparas. Obstetrics and Gynecology 1990; 76: 7983.
26Axelsson, O. Delivery of the large fetus. Acta Obstetricia et Gynecologica Scandinavica 1990; 69: 473–4.
27Oppenheimer, LW, Sherriff, EA, Goodman, JD, Shah, D, James, CE. The duration of lochia. British Journal of Obstetrics and Gynaecology 1986; 93: 754–7.
28Paterson, JA, Davis, J, Gregory, M, Holt, SJR, Pachulski, A, Stamford, DE, et al. A study on the effects of low haemoglobin on postnatal women. Midwifery 1994; 10: 7786.
29Larsen, CE, Serdula, MK, Sullivan, KM. Macrosomia: influence of maternal overweight among a low–income population. American Journal of Obstetrics and Gynecology 1990; 162: 490–4.
30Combs, CA, Murphy, EL, Laros, RK. Factors associated with postpartum hemorrhage with vaginal birth. Obstetrics and Gynecology 1991; 77: 6976.
31Crane, SS, Wojtowycz, MA, Dye, TD, Aubry, RH, Artal, R. Association between prepregnancy obesity and risk of cesarean delivery. Obstetrics and Gynecology 1997; 89: 213–6.
32Taylor, DJ, Mallen, C, McDougall, N, Lind, T. Effect of iron supplementation on serum ferritin levels during and after pregnancy. British Journal of Obstetrics and Gynaecology 1982; 89: 1010–7.
33Milman, N, Agger, AO, Nielsen, OJ. Iron supplementation during pregnancy. Effect on iron status markers, serum erythropoietin and human placental lactogen. A placebo controlled study in 207 Danish women. Danish Medical Bulletin 1991; 38: 471–6.
34Eskeland, B, Malterud, K, Ulvik, RJ, Hunskaar, S. Iron supplementation in pregnancy: is less enough? A randomized, placebo controlled trial of low dose iron supplementation with and without heme iron. Acta Obstetricia et Gynecologica Scandinavica 1997; 76: 822–8.
35Preziosi, P, Prual, A, Galan, P, Daouda, H, Boureima, H, Hercberg, S. Effect of iron supplementation on the iron status of pregnant women: consequences for newborns. American Journal of Clinical Nutrition 1997; 66: 1178–82.
36Collins, JB. Puerperium. Primary Care 1983; 10: 309–32.
37Bothwell, TH, Charlton, RW. Iron Deficiency in Women. Report of the International Nutritional Anemia Consultative Group. Washington, DC: The Nutrition Foundation, 1981.
38SAS Institute. SAS STAT. Cary, NC: SAS Institute, 2000.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed