Skip to main content Accessibility help
×
Home

Predictors of misreporting in an elderly population: the ‘Quality of life after 65’ study

  • C Bazelmans (a1), C Matthys (a2), S De Henauw (a2), M Dramaix (a1), M Kornitzer (a1), G De Backer (a2) and A Levêque (a1)...

Abstract

Objectives

To evaluate the prevalence and identify some predictors of misreporting in an elderly Belgian population and to assess the effect of underreporting on estimated intakes of macronutrients and foods.

Design

A 1-day food record was completed by 2083 adult men and women aged 65 years or more. Individuals whose energy intake was lower than 0.90 × BMR (basal metabolic rate) were defined as underreporters. Overreporting was defined as energy intake greater than 2 × BMR.

Results

Underreporting and overreporting occurred in 13.6% and 7.9% of food records, respectively. Results from logistic regression models indicated that gender and body mass index (BMI) were predictors of misreporting. Whereas women were more likely to underreport energy intake, the prevalence of overreporting was higher in men. Underreporting was more prevalent among obese people and overreporting more prevalent in normal-weight subjects. Smoking status and education level did not predict underreporting; however, overreporting was more likely to occur in more highly educated subjects. A cultural difference in reporting of nutrient intakes was also found, with the percentage of underreporters being higher among Walloons compared with Flemish.

Conclusion

BMI seemed to be one of the most important factors in misreporting. This calls for special attention when dietary surveys are performed on obese or lean people.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predictors of misreporting in an elderly population: the ‘Quality of life after 65’ study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predictors of misreporting in an elderly population: the ‘Quality of life after 65’ study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predictors of misreporting in an elderly population: the ‘Quality of life after 65’ study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email christine.bazelmans@ulb.ac.be

References

Hide All
1Zhang, J, Temme, EH, Sasaki, S, Kesteloot, H. Under- and overreporting of energy intake using urinary cations as biomarkers: relation to body mass index. American Journal of Epidemiology 2000; 152: 453–62.
2Hill, RJ, Davies, PS. The validity of self-reported energy intake as determined using the doubly labelled water technique. British Journal of Nutrition 2001; 85: 415–30.
3Trabulsi, J, Schoeller, DA. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. American Journal of Physiology 2001; 281: E8919.
4Subar, AF, Kipnis, V, Troiano, RP, Midthune, D, Schoeller, DA, Bingham, S, et al. . Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: the OPEN study. American Journal of Epidemiology 2003; 158: 113.
5Goldberg, GR, Black, AE, Jebb, SA, Cole, TJ, Murgatroyd, PR, Coward, WA, et al. . Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. European Journal of Clinical Nutrition 1991; 45: 569–81.
6Bingham, S. The dietary assessment of individuals: methods, accuracy, new techniques and recommendations. Nutrition Abstracts and Reviews 1987; 57: 705–42.
7Hebert, JR, Clemow, L, Pbert, L, Ockene, IS, Ockene, JK. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. International Journal of Epidemiology 1995; 24: 389–98.
8Gnardellis, C, Boulou, C, Trichopoulou, A. Magnitude, determinants and impact of under-reporting of energy intake in a cohort study in Greece. Public Health Nutrition 1998; 1: 131–7.
9Prentice, RL. Measurement error and results from analytic epidemiology: dietary fat and breast cancer. Journal of the National Cancer Institute 1996; 88: 1738–47.
10Paeratakul, S, Popkin, BM, Kohlmeier, L, Hertz-Picciotto, I, Guo, X, Edwards, LJ. Measurement error in dietary data: implications for the epidemiologic study of the diet–disease relationship. European Journal of Clinical Nutrition 1998; 52: 722–7.
11Lafay, L, Basdevant, A, Charles, MA, Vray, M, Balkau, B, Borys, JM, et al. . Determinants and nature of dietary underreporting in a free-living population: the Fleurbaix Laventie Ville Sante (FLVS) Study. International Journal of Obesity and Related Metabolic Disorders 1997; 21: 567–73.
12Tomoyasu, NJ, Toth, MJ, Poehlman, ET. Misreporting of total energy intake in older men and women. Journal of the American Geriatrics Society 1999; 47: 710–5.
13Harrison, GG, Galal, OM, Ibrahim, N, Khorshid, A, Stormer, A, Leslie, J, et al. . Underreporting of food intake by dietary recall is not universal: a comparison of data from Egyptian and American women. Journal of Nutrition 2000; 130: 2049–54.
14Pomerleau, J, Ostbye, T, Bright-See, E. Potential underreporting of energy intake in the Ontario Health Survey and its relationship with nutrient and food intakes. European Journal of Epidemiology 1999; 15: 553–7.
15Livingstone, MB, Black, AE. Markers of the validity of reported energy intake. Journal of Nutrition 2003; 133, (Suppl.): 895S920.
16Johansson, G, Wikman, A, Ahren, AM, Hallmans, G, Johansson, I. Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutrition 2001; 4: 919–27.
17Becker, W, Foley, S, Shelley, E, Gibney, M. Energy under-reporting in Swedish and Irish dietary surveys: implications for food-based dietary guidelines. British Journal of Nutrition 1999; 81(Suppl.): S12731.
18Mendez, MA, Wynter, S, Wilks, R, Forrester, T. Under- and overreporting of energy is related to obesity, lifestyle factors and food group intakes in Jamaican adults. Public Health Nutrition 2004; 7: 919.
19Johansson, L, Solvoll, K, Bjorneboe, GE, Drevon, CA. Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. American Journal of Clinical Nutrition 1998; 68: 266–74.
20Kornitzer, M, Dramaix, M. The Belgian Interuniversity Research on Nutrition and Health (BIRNH): general introduction. Acta Cardiologica 1989; XLIV: 8999.
21World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. WHO Technical Report Series No. 854. Geneva: WHO, 1995.
22Voorlichtingsbureau voor de Voeding. Nederlandse voedingsmiddelentabel, druk 32. Netherlands: Gravenhage, 1979.
23Paul, AA, Southgate, D. The Composition of Foods, 4th ed. London: The Royal Society of Chemistry, 1980; 297.
24Schofield, WN. Predicting basal metabolic rate, new standards and review of previous work. Human Nutrition. Clinical Nutrition 1985; 39C(Suppl.): 541.
25Black, AE, Goldberg, GR, Jebb, SA, Bingham, SA, Livingstone, MBE, Prentice, AM. Validations of dietary assessment using doubly labelled water. Proceedings of the Nutrition Society 1992; 51: 72A.
26Black, AE, Coward, WA, Cole, TJ, Prentice, AM. Human energy expenditure in affluent societies: an analysis of 547 doubly-labelled water measurements. European Journal of Clinical Nutrition 1996; 50: 7292.
27Black, AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. International Journal of Obesity and Related Metabolic Disorders 2000; 24: 1119–30.
28Black, AE, Goldberg, GR, Jebb, SA, Livingstone, MBE, Cole, TJ, Prentice, AM. Critical evaluation of energy intake data using fundamental principles of energy physiology: 2. Evaluating the results of published surveys. European Journal of Clinical Nutrition 1991; 45: 583–99.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed