Skip to main content Accessibility help
×
Home

Policy outcomes of applying different nutrient profiling systems in recreational sports settings: the case for national harmonization in Canada

  • Dana Lee Olstad (a1), Kelly Poirier (a2), Patti-Jean Naylor (a3), Cindy Shearer (a2) and Sara FL Kirk (a2) (a4)...

Abstract

Objective

To assess agreement among three nutrient profiling systems used to evaluate the healthfulness of vending machine products in recreation and sport settings in three Canadian provinces. We also assessed whether the nutritional profile of vending machine items in recreation and sport facilities that were adhering to nutrition guidelines (implementers) was superior to that of facilities that were not (non-implementers).

Design

Trained research assistants audited the contents of vending machines. Three provincial nutrient profiling systems were used to classify items into each province’s most, moderately and least healthy categories. Agreement among systems was assessed using weighted κ statistics. ANOVA assessed whether the average nutritional profile of vending machine items differed according to province and guideline implementation status.

Setting

Eighteen recreation and sport facilities in three Canadian provinces. One-half of facilities were implementing nutrition guidelines.

Subjects

Snacks (n 531) and beverages (n 618) within thirty-six vending machines were audited.

Results

Overall, the systems agreed that the majority of items belonged within their respective least healthy categories (66–69 %) and that few belonged within their most healthy categories (14–22 %). Agreement among profiling systems was moderate to good, with κ w values ranging from 0·49 to 0·69. Implementers offered fewer of the least healthy items (P<0·05) and these items had a better nutritional profile compared with items in non-implementing facilities.

Conclusions

The policy outcomes of the three systems are likely to be similar, suggesting there may be scope to harmonize nutrient profiling systems at a national level to avoid unnecessary duplication and support food reformulation by industry.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Policy outcomes of applying different nutrient profiling systems in recreational sports settings: the case for national harmonization in Canada
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Policy outcomes of applying different nutrient profiling systems in recreational sports settings: the case for national harmonization in Canada
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Policy outcomes of applying different nutrient profiling systems in recreational sports settings: the case for national harmonization in Canada
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email sara.kirk@dal.ca

References

Hide All
1. Guh, DP, Zhang, W, Bansback, N et al. (2009) The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88.
2. Wang, F & Veugelers, PJ (2008) Self-esteem and cognitive development in the era of the childhood obesity epidemic. Obes Rev 9, 615623.
3. Garriguet, D (2004) Overview of Canadians’ Eating Habits. Nutrition . Findings from the Canadian Community Health Survey. Ottawa, ON: Statistics Canada.
4. Garriguet, D (2008) Beverage consumption of children and teens. Health Rep 19, 1722.
5. Naylor, PJ, Bridgewater, L, Purcell, M et al. (2010) Publically funded recreation facilities: obesogenic environments for children and families? Int J Environ Res Public Health 7, 22082221.
6. Nelson, TF, Stovitz, SD, Thomas, M et al. (2011) Do youth sports prevent pediatric obesity? A systematic review and commentary. Curr Sports Med Rep 10, 360370.
7. Olstad, DL, Downs, SM, Raine, KD et al. (2011) Improving children’s nutrition environments: a survey of adoption and implementation of nutrition guidelines in recreational facilities. BMC Public Health 11, 423.
8. Olstad, DL & Raine, KD (2013) Profit versus public health: the need to improve the food environment in recreational facilities. Can J Public Health 104, e167e169.
9. Olstad, DL, Raine, KD & McCargar, LJ (2012) Adopting and implementing nutrition guidelines in recreational facilities: public and private sector roles. A multiple case study. BMC Public Health 12, 376.
10. Taber, DR, Chriqui, JF & Chaloupka, FJ (2012) Differences in nutrient intake associated with state laws regarding fat, sugar, and caloric content of competitive foods. Arch Pediatr Adolesc Med 166, 452458.
11. Taber, DR, Chriqui, JF, Perna, FM et al. (2012) Weight status among adolescents in States that govern competitive food nutrition content. Pediatrics 130, 437444.
12. Taber, DR, Chriqui, JF, Powell, L et al. (2013) Association between state laws governing school meal nutrition content and student weight status: implications for new USDA school meal standards. JAMA Pediatr 167, 513519.
13. Jaime, PC & Lock, K (2009) Do school based food and nutrition policies improve diet and reduce obesity? Prev Med 48, 4553.
14. Schwartz, MB, Novak, SA & Fiore, SS (2009) The impact of removing snacks of low nutritional value from middle schools. Health Educ Behav 36, 9991011.
15. Hood, NE, Colabianchi, N, Terry-McElrath, YM et al. (2013) School wellness policies and foods and beverages available in schools. Am J Prev Med 45, 143149.
16. Wiecha, JL, Finkelstein, D, Troped, PJ et al. (2006) School vending machine use and fast-food restaurant use are associated with sugar-sweetened beverage intake in youth. J Am Diet Assoc 106, 16241630.
17. Tetens, I, Oberdorfer, R, Madsen, C et al. (2007) Nutritional characterisation of foods: science-based approach to nutrient profiling. Summary report of an ILSI Europe workshop held in April 2006. Eur J Nutr 46, Suppl. 2, 414.
18. Rayner, M, Scarborough, P & Kaur, A (2013) Nutrient profiling and the regulation of marketing to children. Possibilities and pitfalls. Appetite 62, 232235.
19. Sacks, G, Rayner, M, Stockley, L et al. (2011) Applications of nutrient profiling: potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system. Eur J Clin Nutr 65, 298306.
20. World Health Organization (2011) Nutrient Profiling: Report of a Technical Meeting, London, UK, 4–6 October 2010. Geneva: WHO.
21. Brinsden, H & Lobstein, T (2013) Comparison of nutrient profiling schemes for restricting the marketing of food and drink to children. Pediatr Obes 8, 325337.
22. Scarborough, P, Payne, C, Agu, CG et al. (2013) How important is the choice of the nutrient profile model used to regulate broadcast advertising of foods to children? A comparison using a targeted data set. Eur J Clin Nutr 67, 815820.
23. British Columbia Ministry of Health (2007) Healthier Choices in Vending Machines in B.C. Public Buildings Policy Paper. http://www.lcs.gov.bc.ca/HealthierChoices/pdf/CompletePolicy.pdf (accessed January 2014).
24. Alberta Health and Wellness (2011) Alberta Nutrition Guidelines for Children and Youth. http://www.albertahealthservices.ca/SchoolsTeachers/if-sch-nfs-angcy-overview.pdf (accessed January 2014).
25. Nova Scotia Department of Education & Nova Scotia Department of Health Promotion and Protection (2006) Food and Beverage Standards for Nova Scotia Public Schools. http://www.ednet.ns.ca/healthy_eating/pdf/22454_ver2_lo_res.pdf (accessed January 2014).
26. Government of British Columbia (2010) Brand Name Food List. https://bnfl.healthlinkbc.ca/default.aspx (accessed January 2014).
27. Altman, DG (1991) Practical Statistics for Medical Research. London: Chapman and Hall.
28. Drewnowski, A & Fulgoni, V 3rd (2008) Nutrient profiling of foods: creating a nutrient-rich food index. Nutr Rev 66, 2339.
29. Scarborough, P, Rayner, M & Stockley, L (2007) Developing nutrient profile models: a systematic approach. Public Health Nutr 10, 330336.
30. Drewnowski, A, Maillot, M & Darmon, N (2009) Should nutrient profiles be based on 100 g, 100 kcal or serving size? Eur J Clin Nutr 63, 898904.
31. Olstad, DL, Raine, KD & McCargar, LJ (2013) Adopting and implementing nutrition guidelines in recreational facilities: tensions between public health and corporate profitability. Public Health Nutr 16, 815823.
32. US Department of Agriculture (2010). Healthy Hunger-Free Kids Act. http://www.gpo.gov/fdsys/pkg/PLAW-111publ296/pdf/PLAW-111publ296.pdf (accessed January 2014).
33. Naylor, PJ, Wekken, SV, Trill, D et al. (2010) Facilitating healthier food environments in public recreation facilities: results of a pilot project in British Columbia, Canada. J Park Recreat Admin 28, 3758.
34. Park, S, Sappenfield, WM, Huang, Y et al. (2010) The impact of the availability of school vending machines on eating behavior during lunch: the Youth Physical Activity and Nutrition Survey. J Am Diet Assoc 110, 15321536.
35. Neumark-Sztainer, D, French, SA, Hannan, PJ et al. (2005) School lunch and snacking patterns among high school students: associations with school food environment and policies. Int J Behav Nutr Phys Act 2, 14.
36. Kubik, MY, Lytle, LA, Hannan, PJ et al. (2003) The association of the school food environment with dietary behaviors of young adolescents. Am J Public Health 93, 11681173.
37. Thompson, OM, Yaroch, AL, Moser, RP et al. (2010) School vending machine purchasing behavior: results from the 2005 YouthStyles survey. J Sch Health 80, 225232.
38. Minaker, LM, Storey, KE, Raine, KD et al. (2011) Associations between the perceived presence of vending machines and food and beverage logos in schools and adolescents’ diet and weight status. Public Health Nutr 14, 13501356.
39. Fox, MK, Dodd, AH, Wilson, A et al. (2009) Association between school food environment and practices and body mass index of US public school children. J Am Diet Assoc 109, 2 Suppl., S108S117.
40. Azais-Braesco, V, Goffi, C & Labouze, E (2006) Nutrient profiling: comparison and critical analysis of existing systems. Public Health Nutr 9, 613622.

Keywords

Policy outcomes of applying different nutrient profiling systems in recreational sports settings: the case for national harmonization in Canada

  • Dana Lee Olstad (a1), Kelly Poirier (a2), Patti-Jean Naylor (a3), Cindy Shearer (a2) and Sara FL Kirk (a2) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed