Skip to main content Accessibility help
×
Home

Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh

  • Jessica R Bogard (a1) (a2), Geoffrey C Marks (a1), Abdullah Mamun (a1) and Shakuntala H Thilsted (a3)

Abstract

Objective

Fish is the most important animal-source food (ASF) in Bangladesh, produced from capture fisheries (non-farmed) and aquaculture (farmed) sub-sectors. Large differences in micronutrient content of fish species from these sub-sectors exist. The importance of fish in diets of vulnerable groups compared with other ASF; contribution from non-farmed and farmed species to nutrient intakes; and differences in fish consumption among age, gender, wealth groups and geographic regions were analysed, using quantitative intra-household fish consumption data, focusing on the first 1000 d of life.

Design

Two-stage stratified sample.

Setting

Nationally representative of rural Bangladesh.

Subjects

Households (n 5503) and individuals (n 24 198).

Results

Fish consumption in poor households was almost half that in wealthiest households; and lower in females than males in all groups, except the wealthiest, and for those aged ≥15 years (P<0·01). In infants of complementary feeding age, 56 % did not consume ASF on the survey day, despite 78 % of mothers knowing this was recommended. Non-farmed fish made a larger contribution to Fe, Zn, Ca, vitamin A and vitamin B12 intakes than farmed fish (P<0·0001).

Conclusions

Policies and programmes aimed to increase fish consumption as a means to improve nutrition in rural Bangladesh should focus on women and young children, and on the poorest households. Aquaculture plays an important role in increasing availability and affordability of fish; however, non-farmed fish species are better placed to contribute to greater micronutrient intakes. This presents an opportunity for aquaculture to contribute to improved nutrition, utilising diverse production technologies and fish species, including small fish.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Email jessica.bogard@live.com

References

Hide All
1. Food and Agriculture Organization of the United Nations (2014) The State of World Fisheries and Aquaculture 2014. Rome: FAO.
2. Belton, B & Thilsted, SH (2014) Fisheries in transition: food and nutrition security implications for the global South. Glob Food Sec 3, 5966.
3. Belton, B, van Asseldonk, IJM & Thilsted, SH (2014) Faltering fisheries and ascendant aquaculture: implications for food and nutrition security in Bangladesh. Food Policy 44, 7787.
4. Bogard, JR, Thilsted, SH, Marks, GC et al. (2015) Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J Food Compost Anal 42, 120133.
5. Wheal, MS, DeCourcy-Ireland, E, Bogard, JR et al. (2016) Measurement of haem and total iron in fish, shrimp and prawn using ICP-MS: implications for dietary iron intake calculations. Food Chem 201, 222229.
6. Thompson, P, Roos, N, Sultana, P et al. (2002) Changing significance of inland fisheries for livelihoods and nutrition in Bangladesh. J Crop Prod 6, 249317.
7. Thilsted, SH, Thorne-Lyman, A, Webb, P et al. (2016) Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126131.
8. Herforth, A, Lidder, P & Gill, M (2015) Strengthening the links between nutrition and health outcomes and agricultural research. Food Sec 7, 457461.
9. Bryce, J, Coitinho, D, Darnton-Hill, I et al. (2008) Maternal and child undernutrition: effective action at national level. Lancet 371, 510526.
10. Ahmed, AU, Ahmad, K, Chou, V et al. (2013) The Status of Food Security in the Feed the Future Zone and Other Regions of Bangladesh: Results from the 2011–2012 Bangladesh Integrated Household Survey. Washington, DC: International Food Policy Research Institute.
11. Bangladesh Bureau of Statistics (2015) Population and Housing Census 2011: National Report . vol. 1: Analytical Report . Dhaka: Government of the People’s Republic of Bangladesh.
12. Institute of Nutrition and Food Science (2013) Food Composition Table for Bangladesh. Dhaka: INFS.
13. Roos, N (2001) Fish consumption and aquaculture in rural Bangladesh: nutritional impact and production potential of culturing small indigenous fish species (SIS) in polyculture with commonly cultured carps. PhD Thesis, The Royal Veterinary and Agricultural University.
14. Institute of Nutrition (2014) ASEAN Food Composition Database. Electronic version 1. Bangkok: Mahidol University.
15. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 12201228.
16. Yakes, EA, Arsenault, JE, Munirul Islam, M et al. (2011) Intakes and breast-milk concentrations of essential fatty acids are low among Bangladeshi women with 24–48-month-old children. Br J Nutr 105, 16601670.
17. Abdullah, M & Wheeler, EF (1985) Seasonal variations, and the intra-household distribution of food in a Bangladeshi village. Am J Clin Nutr 41, 13051313.
18. Bouis, HE, Eozenou, P & Rahman, A (2011) Food prices, household income, and resource allocation: socioeconomic perspectives on their effects on dietary quality and nutritional status. Food Nutr Bull 32, 1 Suppl., S14S23.
19. Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders (2013) Desirable Dietary Pattern for Bangladesh. Dhaka: National Food Policy Capacity Strengthening Program.
20. Dewey, K (2001) Guiding Principles for Complementary Feeding of the Breastfed Child. Washington, DC: Pan American Health Organization and WHO.
21. Rasheed, S, Haider, R, Hassan, N et al. (2011) Why does nutrition deteriorate rapidly among children under 2 years of age? Using qualitative methods to understand community perspectives on complementary feeding practices in Bangladesh. Food Nutr Bull 32, 192200.
22. Bogard, JR, Hother, A-L, Saha, M et al. (2015) Inclusion of small indigenous fish improves nutritional quality during the first 1000 days. Food Nutr Bull 36, 276289.
23. Hibbeln, JR, Davis, JM, Steer, C et al. (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369, 578585.
24. Oken, E, Østerdal, ML, Gillman, MW et al. (2008) Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth Cohort. Am J Clin Nutr 88, 789796.
25. Michaelsen, KF, Dewey, KG, Perez-Exposito, AB et al. (2011) Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6–24 months), and pregnant and lactating women. Matern Child Nutr 7, 124140.
26. Roos, N, Leth, T, Jakobsen, J et al. (2002) High vitamin A content in some small indigenous fish species in Bangladesh: perspectives for food-based strategies to reduce vitamin A deficiency. Int J Food Sci Nutr 53, 425437.
27. Toufique, KA & Belton, B (2014) Is aquaculture pro-poor? Empirical evidence of impacts on fish consumption in Bangladesh. World Dev 64, 609620.
28. Dey, MM, Alam, MF & Bose, ML (2010) Demand for aquaculture development: perspectives from Bangladesh for improved planning. Rev Aquacult 2, 1632.
29. Thilsted, SH & Wahab, MA (2014) Polyculture of Carps and Mola in Ponds and Ponds Connected to Rice Fields. CGIAR Research Program on Aquatic Agricultural Systems. Penang, Malaysia: WorldFish.
30. Fiedler, JL, Lividini, K, Drummond, E et al. (2016) Strengthening the contribution of aquaculture to food and nutrition security: the potential of a vitamin A-rich, small fish in Bangladesh. Aquaculture 452, 291303.
31. Thilsted, S & Wahab, M (2014) Sustainable Production of Small Fish in Wetland Areas of Bangladesh. CGIAR Research Program on Aquatic Agricultural Systems Brochure no. AAS-2014-07. Penang, Malaysia: WorldFish.
32. Dey, MM, Spielman, DJ, Haque, ABM et al. (2013) Change and diversity in smallholder rice-fish systems: recent evidence and policy lessons from Bangladesh. Food Policy 43, 108117.
33. James, P Grant School of Public Health & Helen Keller International (2014) State of Food Security and Nutrition in Bangladesh: 2013. Dhaka: JPGSPH and HKI.

Keywords

Type Description Title
WORD
Supplementary materials

Bogard supplementary material
Table S1

 Word (31 KB)
31 KB

Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh

  • Jessica R Bogard (a1) (a2), Geoffrey C Marks (a1), Abdullah Mamun (a1) and Shakuntala H Thilsted (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed