Skip to main content Accessibility help
×
Home

Impact of body mass on hospital resource use in total hip arthroplasty

  • John A Batsis (a1), James M Naessens (a2), Mark T Keegan (a3), Amy E Wagie (a2), Paul M Huddleston (a4) and Jeanne M Huddleston (a2) (a5)...

Abstract

Objective

To determine the impact of BMI on post-operative outcomes and resource utilization following elective total hip arthroplasty (THA).

Design

A retrospective cohort analysis on all primary elective THA patients between 1996 and 2004. Primary outcomes investigated using regression analyses included length of stay (LOS) and costs (US dollars).

Setting

Mayo Clinic Rochester, a tertiary care centre.

Subjects

Patients were stratified by pre-operative BMI as normal (18·5–24·9 kg/m2), overweight (25·0–29·9 kg/m2), obese (30·0–34·9 kg/m2) and morbidly obese (≥35·0 kg/m2). Of 5642 patients, 1362 (24·1 %) patients had a normal BMI, 2146 (38·0 %) were overweight, 1342 (23·8 %) were obese and 792 (14·0 %) were morbidly obese.

Results

Adjusted LOS was similar among normal (4·99 d), overweight (5·00 d), obese (5·02 d) and morbidly obese (5·17 d) patients (P = 0·20). Adjusted overall episode costs were no different (P = 0·23) between the groups of normal ($17 211), overweight ($17 462), obese ($17 195) and morbidly obese ($17 655) patients. Overall operative and anaesthesia costs were higher in the morbidly obese group ($5688) than in normal ($5553), overweight ($5549) and obese ($5593) patients (P = 0·03). Operating room costs were higher in morbidly obese patients ($3418) than in normal ($3276), overweight ($3291) and obese ($3340) patients (P < 0·001). Post-operative costs were no different (P = 0·30). Blood bank costs differed (P = 0·002) and were lower in the morbidly obese group ($180) compared with the other patient groups (P < 0·05). Other differences in costs were not significant. Morbidly obese patients were more likely to be transferred to a nursing home (24·1 %) than normal (18·4 %), overweight (17·9 %) or obese (16·0 %) patients (P = 0·001 each). There were no differences in the composite endpoint of 30 d mortality, re-admissions, re-operations or intensive care unit utilization.

Conclusions

BMI in patients undergoing primary elective THA did not impact LOS or overall institutional acute care costs, despite higher operative costs in morbidly obese patients. Obesity does not increase resource utilization for elective THA.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of body mass on hospital resource use in total hip arthroplasty
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of body mass on hospital resource use in total hip arthroplasty
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of body mass on hospital resource use in total hip arthroplasty
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email john.batsis@gmail.com

References

Hide All
1.Flegal, KM, Carroll, MD, Kuczmarski, RJ & Johnson, CL (1998) Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord 22, 3947.
2.Ogden, CL, Carroll, MD, Curtin, LR, McDowell, MA, Tabak, CJ & Flegal, KM (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295, 15491555.
3.Gregg, E, Cheng, Y, Cadwell, B, Imperatore, G, Williams, D, Flegal, K, Narayan, KMV & Williamson, DF (2005) Secular trends in cardiovascular disease risk factors according to body mass index in US adults. JAMA 293, 18681874.
4.Finkelstein, EA, Fiebelkorn, IC & Wang, G (2004) State-level estimates of annual medical expenditures attributable to obesity. Obes Res 12, 1824.
5.Quesenberry, CP Jr, Caan, B & Jacobson, A (1998) Obesity, health services use, and health care costs among members of a health maintenance organization. Arch Intern Med 158, 466472.
6.Wolf, AM & Colditz, GA (1998) Current estimates of the economic cost of obesity in the United States. Obes Res 6, 97106.
7.Lawrence, RC, Helmick, CG, Arnett, FC et al. (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41, 778799.
8.Centers for Disease Control and Prevention (2007) National and state medical expenditures and lost earnings attributable to arthritis and other rheumatic conditions – United States, 2003. MMWR Morb Mortal Wkly Rep 56, 47.
9.Madhok, R, Lewallen, DG, Wallrichs, SL, Ilstrup, DM, Kurland, RL & Melton, LJ 3rd (1993) Trends in the utilisation of primary total hip arthroplasty, 1969 through 1990: a population-based study in Olmsted County, Minnesota. Mayo Clin Proc 68, 1118.
10.Birrell, F, Johnell, O & Silman, A (1999) Projecting the need for hip replacement over the next three decades: influence of changing demography and threshold for surgery. Ann Rheum Dis 58, 569572.
11.Powell, A, Teichtahl, AJ, Wluka, AE & Cicuttini, FM (2005) Obesity: a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports Med 39, 45.
12.Wendelboe, AM, Hegmann, KT, Biggs, JJ, Cox, CM, Portmann, AJ, Gildea, JH, Gren, LH & Lyon, JL (2003) Relationships between body mass indices and surgical replacements of knee and hip joints. Am J Prev Med 25, 290295.
13.Chang, RW, Pellisier, JM & Hazen, GB (1996) A cost-effectiveness analysis of total hip arthroplasty for osteoarthritis of the hip. JAMA 275, 858865.
14.DeFrances, CJ & Hall, MJ (2004) 2002 National Hospital Discharge Survey. Adv Data 129.
15.Kozak, LJ, DeFrances, CJ & Hall, MJ (2006) National hospital discharge survey: 2004 annual summary with detailed diagnosis and procedure data. Vital Health Stat 13 1209.
16.Jibodh, SR, Gurkan, I & Wenz, JF (2004) In-hospital outcome and resource use in hip arthroplasty: influence of body mass. Orthopedics 27, 594601.
17.Epstein, AM, Read, JL & Hoefer, M (1987) The relation of body weight to length of stay and charges for hospital services for patients undergoing elective surgery: a study of two procedures. Am J Public Health 77, 993997.
18.Berry, DJ, Kessler, M & Morrey, BF (1997) Maintaining a hip registry for 25 years. Mayo Clinic experience. Clin Orthop Relat Res 6168.
19.Charlson, ME, Pompei, P, Ales, KL & MacKenzie, CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40, 373383.
20.Long, KH, Bannon, MP, Zietlow, SP, Helgeson, ER, Harmsen, WS, Smith, CD, Ilstrup, DM, Baerga-Varela, Y & Sarr, MG (2001) A prospective randomized comparison of laparoscopic appendectomy with open appendectomy: clinical and economic analyses. Surgery 129, 390400.
21.Fong Soohoo, N, Zingmond, DS, Lieberman, JR & Ko, CY (2006) Optimal timeframe for reporting short-term complication rates after total knee arthroplasty. J Arthroplasty 21, 705711.
22.Batsis, JA, Naessens, JM, Keegan, MT, Huddleston, PM, Wagie, A & Huddleston, JM (2009) Cost-savings of hip arthroplasty patients on specialty orthopedic surgery units. Am J Orthop 38, E5E11.
23.Zizza, C, Herring, AH, Stevens, J & Popkin, BM (2004) Length of hospital stays among obese individuals. Am J Public Health 94, 15871591.
24.Thompson, D, Brown, JB, Nichols, GA, Elmer, PJ & Oster, G (2001) Body mass index and future healthcare costs: a retrospective cohort study. Obes Res 9, 210218.
25.Lehman, DE, Capello, WN & Feinberg, JR (1994) Total hip arthroplasty without cement in obese patients. A minimum two-year clinical and radiographic follow-up study. J Bone Joint Surg Am 76, 854862.
26.Bowditch, MG & Villar, RN (1999) Do obese patients bleed more? A prospective study of blood loss at total hip replacement. Ann R Coll Surg Engl 81, 198200.
27.Schwann, TA, Habib, RH, Zacharias, A, Parenteau, GL, Riordan, CJ, Durham, SJ & Engoren, M (2001) Effects of body size on operative, intermediate, and long-term outcomes after coronary artery bypass operation. Ann Thorac Surg 71, 521530.
28.Finkielman, JD, Gajic, O & Afessa, B (2004) Underweight is independently associated with mortality in post-operative and non-operative patients admitted to the intensive care unit: a retrospective study. BMC Emerg Med 4, 3.
29.Ray, DE, Matchett, SC, Baker, K, Wasser, T & Young, MJ (2005) The effect of body mass index on patient outcomes in a medical ICU. Chest 127, 21252131.
30.Prem, KA, Mensheha, N & McKelvey, JL (1965) Operative treatment of adenocarcinoma of the endometrium in obese women. Am J Obstet Gynecol 92, 1622.
31.Moulton, MJ, Creswell, LL, Mackey, ME, Cox, JL & Rosenbloom, M (1996) Obesity is not a risk factor for significant adverse outcomes after cardiac surgery. Circulation 94, II87II92.
32.Jiganti, JJ, Goldstein, WM & Williams, CS (1993) A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient. Clin Orthop Relat Res 175179.
33.Valiyeva, E, Russell, LB, Miller, JE & Safford, MM (2006) Lifestyle-related risk factors and risk of future nursing home admission. Arch Intern Med 166, 985990.
34.Legner, VJ, Doerner, D, Reilly, DF & McCormick, WC (2004) Risk factors for nursing home placement following major nonemergent surgery. Am J Med 117, 8286.
35.Lubitz, JD & Riley, GF (1993) Trends in Medicare payments in the last year of life. N Engl J Med 328, 10921096.
36.Waldo, DR, Sonnefeld, ST, McKusick, DR & Arnett, RH 3rd (1989) Health expenditures by age group, 1977 and 1987. Health Care Financ Rev 10, 111120.
37.Martineau, P, Filion, KB, Huk, OL, Zukor, DJ, Eisenberg, MJ & Antoniou, J (2005) Primary hip arthroplasty costs are greater in low-volume than in high-volume Canadian hospitals. Clin Orthop Relat Res 152156.
38.Melton, LJ 3rd (1996) History of the Rochester Epidemiology Project. Mayo Clin Proc 71, 266274.
39.US Census Bureau (2000) 2000 Census of Population and Housing. Public Use Microdata Sample, United States. http://www.census.gov (accessed September 2008).
40.Rowland, ML (1990) Self-reported weight and height. Am J Clin Nutr 52, 11251133.
41.Bozic, KJ, Katz, P, Cisternas, M, Ono, L, Ries, MD & Showstack, J (2005) Hospital resource utilisation for primary and revision total hip arthroplasty. J Bone Joint Surg Am 87, 570576.
42.Iezzoni, LI, Foley, SM, Daley, J, Hughes, J, Fisher, ES & Heeren, T (1992) Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA 267, 21972203.
43.Mears, SC, Bawa, M, Pietryak, P, Jones, LC, Rajadhyaksha, AD, Hungerford, DS & Mont, MA (2002) Coding of diagnoses, comorbidities, and complications of total hip arthroplasty. Clin Orthop Relat Res 164170.
44.Hogan, P, Dall, T & Nikolov, P (2003) Economic costs of diabetes in the US in 2002. Diabetes Care 26, 917932.
45.Nichols, GA & Brown, JB (2002) The impact of cardiovascular disease on medical care costs in subjects with and without type 2 diabetes. Diabetes Care 25, 482486.
46.Andreyeva, T, Sturm, R & Ringel, JS (2004) Moderate and severe obesity have large differences in health care costs. Obes Res 12, 19361943.
47.Marzetti, E & Leeuwenburgh, C (2006) Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 41, 12341238.
48.Gallagher, D, Visser, M, Sepulveda, D, Pierson, RN, Harris, T & Heymsfield, SB (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143, 228239.
49.Smalley, KJ, Knerr, AN, Kendrick, ZV, Colliver, JA & Owen, OE (1990) Reassessment of body mass indices. Am J Clin Nutr 52, 405408.
50.Vincent, HK, Weng, JP & Vincent, KR (2007) Effect of obesity on inpatient rehabilitation outcomes after total hip arthroplasty. Obesity (Silver Spring) 15, 522530.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed