Skip to main content Accessibility help
×
Home

Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: a prospective approach in the Tehran Lipid and Glucose Study

  • Tayebeh Doostvandi (a1), Zahra Bahadoran (a1), Hassan Mozaffari-Khosravi (a2), Parvin Mirmiran (a1) and Fereidoun Azizi (a3)...

Abstract

Objective

To investigate the association of major dietary patterns with the risk of impaired glucose and insulin homeostasis during a 3-year follow-up.

Design

Fasting serum insulin (FSI), fasting (FSG) and 2 h serum glucose (2h-SG) were measured at baseline and again after 3 years. Dietary intakes were evaluated using a validated 168-item semi-quantitative FFQ and major dietary patterns were obtained using principal component analysis. Logistic regression models were used to estimate the occurrence of impaired fasting glucose (IFG), impaired glucose tolerance (IGT), pre-diabetes (IGT/IFG), β-cell dysfunction and hyperinsulinaemia across tertiles of dietary patterns, with adjustment for potential confounding variables.

Setting

Tehran Lipid and Glucose Study.

Subjects

Iranian men and women (n 904).

Results

Mean age of participants was 38·7 (sd 11·3) years and 44·6 % were men. Major dietary patterns were Western, traditional and healthy, which explained 25·2 % of total variance in food intake. There was a positive association between Western and traditional scores with 3-year change in 2h-SG, while the healthy pattern was negatively related to 3-year changes in FSG, 2h-SG, FSI and homeostasis model assessment of insulin resistance. Highest compared with the lowest tertile of the Western dietary pattern was accompanied by a higher risk for development of IGT (OR=3·09; 95 % CI 1·28, 7·50); a higher score on the healthy dietary pattern was associated with a significantly reduced risk of hyperinsulinaemia (OR=0·53; 95 % CI 0·28, 0·94).

Conclusions

Our findings showed that adherence to a Western dietary pattern may be a risk factor for the development of IGT, while a healthy dietary pattern may prevent hyperinsulinaemia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: a prospective approach in the Tehran Lipid and Glucose Study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: a prospective approach in the Tehran Lipid and Glucose Study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: a prospective approach in the Tehran Lipid and Glucose Study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email mozaffari.kh@gmail.com

References

Hide All
1. Nathan, DM, Davidson, MB, DeFronzo, RA et al. (2007) Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753759.
2. Levitzky, YS, Pencina, MJ, D’Agostino, RB et al. (2008) Impact of impaired fasting glucose on cardiovascular disease: the Framingham Heart Study. J Am Coll Cardiol 51, 264270.
3. Cerf, ME (2013) β-Cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4, 37.
4. Mahalle, N, Kulkarni, MV, Naik, SS et al. (2014) Association of dietary factors with insulin resistance and inflammatory markers in subjects with diabetes mellitus and coronary artery disease in Indian population. J Diabetes Complications 28, 536541.
5. Wang, B, Liu, K, Mi, M et al. (2014) Effect of fruit juice on glucose control and insulin sensitivity in adults: a meta-analysis of 12 randomized controlled trials. PLoS One 9, e95323.
6. Arisawa, K, Uemura, H, Yamaguchi, M et al. (2014) Associations of dietary patterns with metabolic syndrome and insulin resistance: a cross-sectional study in a Japanese population. J Med Invest 61, 333344.
7. Canete, R, Gil-Campos, M, Aguilera, CM et al. (2007) Development of insulin resistance and its relation to diet in the obese child. Eur J Nutr 46, 181187.
8. Batis, C, Mendez, MA, Sotres-Alvarez, D et al. (2014) Dietary pattern trajectories during 15 years of follow-up and HbA1c, insulin resistance and diabetes prevalence among Chinese adults. J Epidemiol Community Health 68, 773779.
9. Gupta, D, Krueger, CB & Lastra, G (2012) Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction. Curr Diabetes Rev 8, 7683.
10. Liu, E, McKeown, NM, Newby, PK et al. (2009) Cross-sectional association of dietary patterns with insulin-resistant phenotypes among adults without diabetes in the Framingham Offspring Study. Br J Nutr 102, 576583.
11. van Dam, RM, Rimm, EB, Willett, WC et al. (2002) Dietary patterns and risk for type 2 diabetes mellitus in US men. Ann Intern Med 136, 201209.
12. Fung, TT, Schulze, M, Manson, JE et al. (2004) Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med 164, 22352240.
13. Panagiotakos, DB, Pitsavos, C, Skoumas, Y et al. (2007) The association between food patterns and the metabolic syndrome using principal components analysis: the ATTICA Study. J Am Diet Assoc 107, 979987.
14. Esmaillzadeh, A & Azadbakht, L (2008) Major dietary patterns in relation to general obesity and central adiposity among Iranian women. J Nutr 138, 358363.
15. Azizi, F, Rahmani, M, Emami, H et al. (2002) Cardiovascular risk factors in an Iranian urban population: Tehran lipid and glucose study (phase 1). Soz Praventivmed 47, 408426.
16. Kriska, AM, Knowler, WC, LaPorte, RE et al. (1990) Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care 13, 401411.
17. Borai, A, Livingstone, C, Kaddam, I et al. (2011) Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol 11, 158.
18. Muniyappa, R, Lee, S, Chen, H et al. (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294, E15E26.
19. Ghasemi, AMT, Derakhshan, A, Hasheminia, M et al. (2015) Cut-off points of homeostasis modes assessment of insulin resistance, β-cell function, and fasting serum insulin to identify future type 2 diabetes: Tehran Lipid and Glucose Study. Acta Diabetol 52, 905915.
20. Genuth, S, Alberti, KG, Bennett, P et al. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26, 31603167.
21. Mirmiran, P, Esfahani, FH, Mehrabi, Y et al. (2010) Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr 13, 654662.
22. Hosseini-Esfahani, F, Jessri, M, Mirmiran, P et al. (2010) Adherence to dietary recommendations and risk of metabolic syndrome: Tehran Lipid and Glucose Study. Metabolism 59, 18331842.
23. Li, M, Fan, Y, Zhang, X et al. (2014) Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 4, e005497.
24. Montonen, J, Knekt, P, Harkanen, T et al. (2005) Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 161, 219227.
25. Villegas, R, Yang, G, Gao, YT et al. (2010) Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women: the Shanghai Women’s Health Study. Int J Epidemiol 39, 889899.
26. Schulze, MB, Hoffmann, K, Manson, JE et al. (2005) Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr 82, 675684.
27. Zhang, M, Zhu, Y, Li, P et al. (2015) Associations between dietary patterns and impaired fasting glucose in Chinese men: a cross-sectional study. Nutrients 7, 80728089.
28. Hinderliter, AL, Babyak, MA, Sherwood, A et al. (2011) The DASH diet and insulin sensitivity. Curr Hypertens Rep 13, 6773.
29. Falahi, E, Roosta, S, Ebhrahimzadeh, F et al. (2013) Traditional dietary patterns and risk of metabolic syndrome: a study in Khorramabad. Iran J Nutr Sci Food Technol 8, 155164.
30. Visuthranukul, C, Sirimongkol, P, Prachansuwan, A et al. (2015) Low-glycemic index diet may improve insulin sensitivity in obese children. Pediatr Res 78, 567573.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed