Skip to main content Accessibility help
×
Home

Estimating usual intakes mainly affects the micronutrient distribution among infants, toddlers and pre-schoolers from the 2012 Mexican National Health and Nutrition Survey

  • Carmen Piernas (a1), Donna R Miles (a2), Denise M Deming (a3), Kathleen C Reidy (a3) and Barry M Popkin (a1)...

Abstract

Objective

To compare estimates from one day with usual intake estimates to evaluate how the adjustment for within-person variability affected nutrient intake and adequacy in Mexican children.

Design

In order to obtain usual nutrient intakes, the National Cancer Institute’s method was used to correct the first 24 h dietary recall collected in the entire sample (n 2045) with a second 24 h recall collected in a sub-sample (n 178). We computed estimates of one-day and usual intakes of total energy, fat, Fe, Zn and Na.

Setting

2012 Mexican National Health and Nutrition Survey.

Subjects

A total of 2045 children were included: 0–5·9 months old (n 182), 6–11·9 months old (n 228), 12–23·9 months old (n 537) and 24–47·9 months old (n 1098). From these, 178 provided an additional dietary recall.

Results

Although we found small or no differences in energy intake (kJ/d and kcal/d) between one-day v. usual intake means, the prevalence of inadequate and excessive energy intake decreased somewhat when using measures of usual intake relative to one day. Mean fat intake (g/d) was not different between one-day and usual intake among children >6 months old, but the prevalence of inadequate and excessive fat intake was overestimated among toddlers and pre-schoolers when using one-day intake (P<0·05). Compared with usual intake, estimates from one day yielded overestimated prevalences of inadequate micronutrient intakes but underestimated prevalences of excessive intakes among children aged >6 months.

Conclusions

There was overall low variability in energy and fat intakes but higher for micronutrients. Because the usual intake distributions are narrower, the prevalence of inadequate/excessive intakes may be biased when estimating nutrient adequacy if one day of data is used.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimating usual intakes mainly affects the micronutrient distribution among infants, toddlers and pre-schoolers from the 2012 Mexican National Health and Nutrition Survey
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimating usual intakes mainly affects the micronutrient distribution among infants, toddlers and pre-schoolers from the 2012 Mexican National Health and Nutrition Survey
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimating usual intakes mainly affects the micronutrient distribution among infants, toddlers and pre-schoolers from the 2012 Mexican National Health and Nutrition Survey
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Email popkin@unc.edu

References

Hide All
1. Rtveladze, K, Marsh, T, Barquera, S et al. (2014) Obesity prevalence in Mexico: impact on health and economic burden. Public Health Nutr 17, 233239.
2. Oria, M & Sawyer, K (2007) Joint US–Mexico Workshop on Preventing Obesity in Children and Youth of Mexican Origin: Summary. Washington, DC: The National Academies Press.
3. Barquera, S, Campos, I & Rivera, JA (2013) Mexico attempts to tackle obesity: the process, results, push backs and future challenges. Obes Rev 14, 6978.
4. Popkin, BM, Adair, LS & Ng, SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70, 321.
5. Barquera, S & Flores, M (2006) Obesity and nutrition-related chronic disease in middle-income countries: the case of Mexico. In Understanding and Overcoming Obesity: The Need for Action, pp. 155156 [R Gil, editor]. Montreal: Decision Media.
6. Butte, NF, Fox, MK, Briefel, RR et al. (2010) Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes. J Am Diet Assoc 110, 12 Suppl., S27S37.
7. Devaney, B, Ziegler, P, Pac, S et al. (2004) Nutrient intakes of infants and toddlers. J Am Diet Assoc 104, 1421.
8. Siega-Riz, AM, Deming, DM, Reidy, KC et al. (2010) Food consumption patterns of infants and toddlers: where are we now? J Am Diet Assoc 110, 12 Suppl., S38S51.
9. Lanigan, J, Wells, J, Lawson, M et al. (2004) Number of days needed to assess energy and nutrient intake in infants and young children between 6 months and 2 years of age. Eur J Clin Nutr 58, 745750.
10. Ma, Y, Olendzki, BC, Pagoto, SL et al. (2009) Number of 24-hour diet recalls needed to estimate energy intake. Ann Epidemiol 19, 553559.
11. Barquera, S, Rivera, JA, Safdie, M et al. (2003) Energy and nutrient intake in preschool and school age Mexican children: National Nutrition Survey 1999. Salud Publica Mex 45, 540550.
12. Sepúlveda-Amor, J, Angel, LM, Tapia-Conyer, R et al. (1990) Nutritional status of pre-school children and women in Mexico: results of a probabilistic national survey. Gac Med Mex 126, 207224.
13. Shamah-Levy, T, Villalpando, S, Jáuregui, A et al. (2012) Overview of the nutritional status of selected micronutrients in Mexican children in 2006. Salud Publica Mex 54, 146151.
14. Mundo-Rosas, V, Rodríguez-Ramírez, S & Shamah-Levy, T (2009) Energy and nutrient intake in Mexican children 1 to 4 years old: results from the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex 51, Suppl. 4, S530S539.
15. Tooze, JA, Midthune, D, Dodd, KW et al. (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106, 15751587.
16. Börnhorst, C, Huybrechts, I, Hebestreit, A et al. (2014) Usual energy and macronutrient intakes in 2–9-year-old European children. Int J Obes (Lond) 38, Suppl. 2, S115S123.
17. Tooze, JA, Kipnis, V, Buckman, DW et al. (2010) A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med 29, 28572868.
18. Mendez, MA, Sotres-Alvarez, D, Miles, DR et al. (2014) Shifts in the recent distribution of energy intake among US children aged 2–18 years reflect potential abatement of earlier declining trends. J Nutr 144, 12911297.
19. Huybrechts, I, De Bacquer, D, Cox, B et al. (2008) Variation in energy and nutrient intakes among pre-school children: implications for study design. Eur J Public Health 18, 509516.
20. Birch, LL, Johnson, SL, Andresen, G et al. (1991) The variability of young children’s energy intake. N Engl J Med 324, 232235.
21. Black, A, Cole, T, Wiles, S et al. (1983) Daily variation in food intake of infants from 2 to 18 months. Hum Nutr Appl Nutr 37, 448458.
22. Piwoz, E, Creed, dKH, Lopez, dRG et al. (1994) Within-and between-individual variation in energy intakes by low-income Peruvian infants. Eur J Clin Nutr 48, 333340.
23. Golden, MH (1995) Specific deficiencies versus growth failure: type I and type II nutrients. SCN News issue 12, 1014.
24. Rivera, , de Cossío, TG, Pedraza, LS et al. (2014) Childhood and adolescent overweight and obesity in Latin America: a systematic review. Lancet Diabetes Endocrinol 2, 321332.
25. Kroker-Lobos, MF, Pedroza-Tobías, A, Pedraza, LS et al. (2014) The double burden of undernutrition and excess body weight in Mexico. Am J Clin Nutr 100, issue 6, 1652S1658S.
26. Romero-Martínez, M, Shamah-Levy, T, Franco-Núñez, A et al. (2013) National Health and Nutrition Survey 2012: design and coverage. Salud Publica M ex 55, Suppl. 2, S332S340.
27. Briefel, RR, Kalb, LM, Condon, E et al. (2010) The Feeding Infants and Toddlers Study 2008: study design and methods. J Am Diet Assoc 110, 12 Suppl., S16S26.
28. Dewey, KG, Finley, DA & Lönnerdal, B (1984) Breast milk volume and composition during late lactation (7–20 months). J Pediatr Gastroenterol Nutr 3, 713720.
29. Dewey, KG & Lönnerdal, B (1983) Milk and nutrient intake of breast-fed infants from 1 to 6 months: relation to growth and fatness. J Pediatr Gastroenterol Nutr 2, 497506.
30. Kent, JC, Mitoulas, L, Cox, DB et al. (1999) Breast volume and milk production during extended lactation in women. Exp Physiol 84, 435447.
31. Batis, C, Hernandez-Barrera, L, Barquera, S et al. (2011) Food acculturation drives dietary differences among Mexicans, Mexican Americans, and Non-Hispanic Whites. J Nutr 141, 18981906.
32. US Department of Agriculture, Agricultural Research Service (2013) USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl (accessed February 2014).
33. Institute of Medicine, Food and Nutrition Board (2000) Dietary Reference Intakes: Applications in Dietary Assessment. Washington, DC: The National Academies Press.
34. Institute of Medicine, Food and Nutrition Board (2006) Dietary Reference Intakes: The Essential Guide to Nutrient Requirements [JJ Otten, JP Hellwig and LD Meyers, editors]. Washington, DC: The National Academies Press.
35. Institute of Medicine, Food and Nutrition Board (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: The National Academies Press.
36. Huang, TT, Roberts, SB, Howarth, NC et al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 13, 12051217.
37. Murphy, SP, Guenther, PM & Kretsch, MJ (2006) Using the dietary reference intakes to assess intakes of groups: pitfalls to avoid. J Am Diet Assoc 106, 15501553.
38. Parsons, R, Munro, SS, Buckman, DW et al. (2009) User’s Guide for Analysis of Usual Intakes. Rockville, MD: National Cancer Institute.
39. Korn, EL & Graubard, BI (1999) Analysis of Health Surveys. New York: John Wiley and Sons.
40. Judkins, DR (1990) Fay’s methods for variance estimation. J Off Stat 6, 223239.
41. Gutiérrez, JP (2013) Household socioeconomic classification in the National Health and Nutrition Survey 2012. Salud Publica Mex 55, Suppl. 2, S341S346.
42. Barquera, S, Campos-Nonato, I, Hernández-Barrera, L et al. (2013) Prevalence of obesity in Mexican adults 2000-2012. Salud Publica Mex 55, Suppl. 2, S151S160.
43. Nelson, M, Black, AE, Morris, JA et al. (1989) Between-and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr 50, 155167.
44. Carroll, RJ, Midthune, D, Subar, AF et al. (2012) Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol 175, 340347.
45. Ollberding, NJ, Couch, SC, Woo, JG et al. (2014) Within- and between-individual variation in nutrient intake in children and adolescents. J Acad Nutr Diet 114, 17491758.
46. Willett, W (2013) Nutritional Epidemiology , 3rd ed. New York: Oxford University Press.
47. Shahar, D, Yerushalmi, N, Lubin, F et al. (2001) Seasonal variations in dietary intake affect the consistency of dietary assessment. Eur J Epidemiol 17, 129133.

Keywords

Related content

Powered by UNSILO

Estimating usual intakes mainly affects the micronutrient distribution among infants, toddlers and pre-schoolers from the 2012 Mexican National Health and Nutrition Survey

  • Carmen Piernas (a1), Donna R Miles (a2), Denise M Deming (a3), Kathleen C Reidy (a3) and Barry M Popkin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.