Skip to main content Accessibility help
×
Home

The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review

  • Inong R Gunanti (a1) (a2) (a3) (a4), Abdullah Al-Mamun (a1), Lisa Schubert (a1) and Kurt Z Long (a1) (a2) (a3)

Abstract

Objective

To provide a comprehensive synthesis of the effects of Zn supplementation on childhood body composition and adiposity-related hormone levels.

Design

Five electronic databases were searched for randomized controlled trials of Zn supplementation studies published before 28 February 2015. No statistical pooling of results was carried out due to diversity in study designs.

Setting

Community- or hospital-based, from fourteen developing and developed countries.

Subjects

Children and adolescents aged 0 to 10 years.

Results

Seven of the fourteen studies reported an overall or subgroup effect of Zn supplementation on at least one parameter of body composition, when determined by anthropometric measurements (increased mid upper-arm circumference, triceps skinfold, subscapular skinfold and mid upper-arm muscle area, and decreased BMI). Three out of the fourteen studies reported increased mean value of total body water estimated by bio-impedance analysis and increased fat-free mass estimated by dual energy X-ray absorptiometry and by total body water. Zn supplementation was associated with increased fat-free mass among stunted children. One study found supplementation decreased leptin and insulin concentrations.

Conclusions

Due to the use of anthropometry when determining body composition, a majority of the studies could not accurately address whether alterations in the fat and/or fat-free mass components of the body were responsible for the observed changes in body composition. The effect of Zn supplementation on body composition is not consistent but may modify fat-free mass among children with pre-existing growth failure.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Email inong.gunanti@uqconnect.edu.au

References

Hide All
1. Kelly, T, Yang, W, Chen, CS et al. (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 32, 14311437.
2. Finucane, MM, Stevens, GA, Cowan, MJ et al. (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 377, 557567.
3. Jeyakumar, SM, Vajreswari, A & Giridharan, NV (2008) Vitamin A regulates obesity in WNIN/Ob obese rat; independent of stearoyl-CoA desaturase-1. Biochem Biophys Res Commun 370, 243247.
4. Foss, YJ (2009) Vitamin D deficiency is the cause of common obesity. Med Hypotheses 72, 314321.
5. Gunanti, IR, Marks, GC, Al-Mamun, A et al. (2014) Low serum vitamin B-12 and folate concentrations and low thiamin and riboflavin intakes are inversely associated with greater adiposity in Mexican American children. J Nutr 144, 20272033.
6. Marreiro, DN, Fisberg, M & Cozzolino, SM (2002) Zinc nutritional status in obese children and adolescents. Biol Trace Elem Res 86, 107122.
7. Garcia, OP, Long, KZ & Rosado, JL (2009) Impact of micronutrient deficiencies on obesity. Nutr Rev 67, 559572.
8. Li, Y, Wang, C, Zhu, K et al. (2010) Effects of multivitamin and mineral supplementation on adiposity, energy expenditure and lipid profiles in obese Chinese women. Int J Obes (Lond) 34, 10701077.
9. Ghayour-Mobarhan, M, Taylor, A, New, SA et al. (2005) Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem 42, 364375.
10. Singh, RB, Beegom, R, Rastogi, SS et al. (1998) Association of low plasma concentrations of antioxidant vitamins, magnesium and zinc with high body fat per cent measured by bioelectrical impedance analysis in Indian men. Magnes Res 11, 310.
11. Cavan, KR, Gibson, RS, Grazioso, CF et al. (1993) Growth and body composition of periurban Guatemalan children in relation to zinc status: a cross-sectional study. Am J Clin Nutr 57, 334343.
12. Gibson, RS, Skeaff, M & Williams, S (2000) Interrelationship of indices of body composition and zinc status in 11-yr-old New Zealand children. Biol Trace Elem Res 75, 6577.
13. Ferguson, EL, Gibson, RS, Opare-Obisaw, C et al. (1993) The zinc nutriture of preschool children living in two African countries. J Nutr 123, 14871496.
14. Galan, P, Viteri, FE, Bertrais, S et al. (2005) Serum concentrations of β-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur J Cin Nutr 59, 11811190.
15. Weisstaub, G, Hertrampf, E, Lopez de Romana, D et al. (2007) Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol Trace Elem Res 118, 167174.
16. Ninh, NX, Thissen, JP, Collette, L et al. (1996) Zinc supplementation increases growth and circulating insulin-like growth factor I (IGF-I) in growth-retarded Vietnamese children. Am J Clin Nutr 63, 514519.
17. Castillo-Duran, C, Garcia, H, Venegas, P et al. (1994) Zinc supplementation increases growth velocity of male children and adolescents with short stature. Acta Paediatr 83, 833837.
18. Golden, MH & Golden, BE (1981) Effect of zinc supplementation on the dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. Am J Clin Nutr 34, 900908.
19. McClain, C, Stuart, M, Kasarskis, E et al. (1993) Zinc, appetite regulation and eating disorders. Prog Clin Biol Res 380, 4764.
20. Golden, BE & Golden, MH (1981) Plasma zinc, rate of weight gain, and the energy cost of tissue deposition in children recovering from severe malnutrition on a cow’s milk or soya protein based diet. Am J Clin Nutr 34, 892899.
21. Institute of Medicine (editor) (2001) Vitamin A. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, pp. 82161. Washington, DC: The National Academy Press.
22. Marreiro, DN, Geloneze, B, Tambascia, MA et al. (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112, 109118.
23. Chen, MD, Song, YM & Lin, PY (2000) Zinc may be a mediator of leptin production in humans. Life Sci 66, 21432149.
24. Hashemipour, M, Kelishadi, R, Shapouri, J et al. (2009) Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens) 8, 279285.
25. Brown, KH, Peerson, JM & Allen, LH (1998) Effect of zinc supplementation on children’s growth: a meta-analysis of intervention trials. Bibl Nutr Dieta issue 54, 7683.
26. Park, JH, Grandjean, CJ, Antonson, DL et al. (1986) Effects of isolated zinc deficiency on the composition of skeletal muscle, liver and bone during growth in rats. J Nutr 116, 610617.
27. Gluckman, PD & Hanson, MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305, 17331736.
28. Barker, DJ (1990) The fetal and infant origins of adult disease. BMJ 301, 1111.
29. Hoffman, DJ, Sawaya, AL, Verreschi, I et al. (2000) Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from Sao Paulo, Brazil. Am J Clin Nutr 72, 702707.
30. Sawaya, AL, Grillo, LP, Verreschi, I et al. (1998) Mild stunting is associated with higher susceptibility to the effects of high fat diets: studies in a shantytown population in Sao Paulo, Brazil. J Nutr 128, 2 Suppl., 415S420S.
31. Schardt, C, Adams, MB, Owens, T et al. (2007) Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak 7, 16.
32. Liberati, A, Altman, DG, Tetzlaff, J et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700.
33. Altman, D, Schulz, K, Moher, D et al. (2001) The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med 134, 663694.
34. Hills, AP, Lyell, L & Byrne, NM (2001) An evaluation of the methodology for the assessment of body composition in children and adolescents. In Medicine and Sport Science. vol. 44: Body Composition Assessment in Children and Adolescents, pp. 13 [T Jurimae and AP Hills, editors]. Basel: Karger.
35. Gibson, R (2005) Principles of Nutritional Assessment, 2nd ed. Oxford: Oxford University Press.
36. Wells, JC & Fewtrell, MS (2006) Measuring body composition. Arch Dis Child 91, 612617.
37. Arsenault, JE, Lopez de Romana, D, Penny, ME et al. (2008) Additional zinc delivered in a liquid supplement, but not in a fortified porridge, increased fat-free mass accrual among young Peruvian children with mild-to-moderate stunting. J Nutr 138, 108114.
38. Diaz-Gomez, NM, Domenech, E, Barroso, F et al. (2003) The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics 111, 10021009.
39. Walravens, PA, Hambidge, KM & Koepfer, DM (1989) Zinc supplementation in infants with a nutritional pattern of failure to thrive: a double-blind, controlled study. Pediatrics 83, 532538.
40. Arsenault, JE, Havel, PJ, Lopez de Romana, D et al. (2007) Longitudinal measures of circulating leptin and ghrelin concentrations are associated with the growth of young Peruvian children but are not affected by zinc supplementation. Am J Clin Nutr 86, 11111119.
41. Bueno, O, Bueno, G, Moreno, LA et al. (2008) Zinc supplementation in infants with asymmetric intra uterine growth retardation; effect on growth, nutritional status and leptin secretion. Nutr Hosp 23, 212219.
42. Kelishadi, R, Hashemipour, M, Adeli, K et al. (2010) Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord 8, 505510.
43. Cavan, KR, Gibson, RS, Grazioso, CF et al. (1993) Growth and body composition of periurban Guatemalan children in relation to zinc status: a longitudinal zinc intervention trial. Am J Clin Nutr 57, 344352.
44. Friis, H, Ndhlovu, P, Mduluza, T et al. (1997) The impact of zinc supplementation on growth and body composition: a randomized, controlled trial among rural Zimbabwean schoolchildren. Eur J Clin Nutr 51, 3845.
45. Kikafunda, JK, Walker, AF, Allan, EF et al. (1998) Effect of zinc supplementation on growth and body composition of Ugandan preschool children: a randomized, controlled, intervention trial. Am J Clin Nutr 68, 12611266.
46. Zemel, BS, Kawchak, DA, Fung, EB et al. (2002) Effect of zinc supplementation on growth and body composition in children with sickle cell disease. Am J Clin Nutr 75, 300307.
47. Rivera, JA, Ruel, MT, Santizo, MC et al. (1998) Zinc supplementation improves the growth of stunted rural Guatemalan infants. J Nutr 128, 556562.
48. Bates, CJ, Evans, PH, Dardenne, M et al. (1993) A trial of zinc supplementation in young rural Gambian children. Br J Nutr 69, 243255.
49. Radhakrishna, KV, Hemalatha, R, Geddam, JJ et al. (2013) Effectiveness of zinc supplementation to full term normal infants: a community based double blind, randomized, controlled, clinical trial. PLoS One 8, e61486.
50. Rosado, JL, Lopez, P, Munoz, E et al. (1997) Zinc supplementation reduced morbidity, but neither zinc nor iron supplementation affected growth or body composition of Mexican preschoolers. Am J Clin Nutr 65, 1319.
51. Umeta, M, West, CE, Haidar, J et al. (2000) Zinc supplementation and stunted infants in Ethiopia: a randomised controlled trial. Lancet 355, 20212026.
52. Heinig, MJ, Brown, KH, Lonnerdal, B et al. (2006) Zinc supplementation does not affect growth, morbidity, or motor development of US term breastfed infants at 4–10 mo of age. Am J Clin Nutr 84, 594601.
53. Ruz, M, Castillo-Duran, C, Lara, X et al. (1997) A 14-mo zinc-supplementation trial in apparently healthy Chilean preschool children. Am J Clin Nutr 66, 14061413.
54. Brown, KH, Peerson, JM, Rivera, J et al. (2002) Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. Am J Clin Nutr 75, 10621071.
55. Stammers, AL, Lowe, NM, Medina, MW et al. (2015) The relationship between zinc intake and growth in children aged 1–8 years: a systematic review and meta-analysis. Eur J Clin Nutr 69, 147153.
56. Dorup, I & Clausen, T (1991) Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart. Br J Nutr 66, 493504.
57. Nishi, Y (1996) Zinc and growth. J Am Coll Nutr 15, 340344.
58. Bunce, GE (1994) Interactions between zinc, vitamins A and D, and hormones in the regulation of growth. Adv Exp Med Biol 352, 257264.
59. Lonnerdal, B (2000) Dietary factors influencing zinc absorption. J Nutr 130, 5S Suppl., 1378S1383S.
60. Sandstrom, B, Davidsson, L, Cederblad, A et al. (1985) Oral iron, dietary ligands and zinc absorption. J Nutr 115, 411414.
61. Fleet, JC (2000) Zinc, copper, and manganese. In Biochemical and Physiological Aspects of Human Nutrition, pp. 741760 [MH Stipanuk, editor]. Philadelpia, PA: W.B. Saunders Company.
62. Brown, KH, Rivera, JA, Bhutta, Z et al. (2004) International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25, 1 Suppl. 2, S99S203.
63. Lopez de Romana, D, Salazar, M, Hambidge, KM et al. (2005) Longitudinal measurements of zinc absorption in Peruvian children consuming wheat products fortified with iron only or iron and 1 of 2 amounts of zinc. Am J Clin Nutr 81, 637647.
64. Rohner-Jeanrenaud, F & Jeanrenaud, B (1996) Obesity, leptin, and the brain. N Engl J Med 334, 324325.
65. Klok, MD, Jakobsdottir, S & Drent, ML (2007) The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8, 2134.
66. Ellis, KJ & Nicolson, M (1997) Leptin levels and body fatness in children: effects of gender, ethnicity, and sexual development. Pediatr Res 42, 484488.
67. Dencker, M, Thorsson, O, Karlsson, MK et al. (2006) Leptin is closely related to body fat in prepubertal children aged 8–11 years. Acta Paediatr 95, 975979.
68. Baltaci, AK, Mogulkoc, R & Halifeoglu, I (2005) Effects of zinc deficiency and supplementation on plasma leptin levels in rats. Biol Trace Elem Res 104, 4146.
69. Mantzoros, CS, Prasad, AS, Beck, FW et al. (1998) Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr 17, 270275.
70. Chen, MD, Song, YM & Lin, PY (2000) Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horm Metab Res 32, 107109.
71. Mantzoros, CS (1999) The role of leptin in human obesity and disease: a review of current evidence. Ann Intern Med 130, 671680.
72. Friedman, JM & Halaas, J (1998) Leptin and the regulation of body weight in mammals. Nature 395, 763770.
73. Moore, SE, Falorni, A, Bini, V et al. (2004) Ethnic differences in the relationship between fasting leptin and BMI in children. Int J Obes Relat Metab Disord 28, 1721.
74. Considine, RV, Sinha, MK, Heiman, ML et al. (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334, 292295.
75. Jequier, E (2002) Leptin signal, adiposity, and energy balance. Ann N Y Acad Sci 967, 379388.
76. Jaquet, D, Leger, J, Levy-Marchal, C et al. (1998) Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J Clin Endocrinol Metab 83, 12431246.
77. Sarraf, P, Frederich, RC, Turner, EM et al. (1997) Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 185, 171175.
78. Mast, M, Kortzinger, I, Konig, E et al. (1998) Gender differences in fat mass of 5–7-year old children. Int J Obes Relat Metab Disord 22, 878884.
79. Arfai, K, Pitukcheewanont, PD, Goran, MI et al. (2002) Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology 224, 338344.

Keywords

The effect of zinc supplementation on body composition and hormone levels related to adiposity among children: a systematic review

  • Inong R Gunanti (a1) (a2) (a3) (a4), Abdullah Al-Mamun (a1), Lisa Schubert (a1) and Kurt Z Long (a1) (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed