Skip to main content Accessibility help

Eating frequency and weight status in Portuguese children aged 3–9 years: results from the cross-sectional National Food, Nutrition and Physical Activity Survey 2015–2016

  • Sofia Vilela (a1) (a2), Daniela Correia (a1), Milton Severo (a1) (a2), Andreia Oliveira (a1) (a2), Duarte Torres (a1) (a3), Carla Lopes (a1) (a2) and the IAN-AF Consortium (a1) (a2) (a3)...



To evaluate daily eating frequency (main meals and snacks) in relation to weight status in children aged 3–9 years, representative of the Portuguese population.


Cross-sectional study. Dietary intake was estimated as the mean of two non-consecutive days of food diaries, followed by face-to-face interviews. Weight and height were measured by trained observers. Eating occasions (EO) were defined by the children’s caregiver; an EO was considered separate if the time of consumption was different from other EO and it provided at least 209 kJ (50 kcal). Main meals defined as ‘breakfast’, ‘lunch’ and ‘dinner’ could be selected only once per day. The remaining EO were considered snacks. The association between eating frequency and overweight/obesity was evaluated through logistic regressions weighted for the population distribution.


National Food, Nutrition and Physical Activity Survey of the Portuguese population, 2015–2016.


Portuguese children aged 3–9 years with complete dietary data and anthropometric measurements (n 517).


Overall, the number of daily EO ranged from 3·5 to 11, and on average children had 5·7 daily EO. After adjustment for child’s sex, age and total energy intake, and considering only plausible energy intake reporters, having < 3 snacks/d was positively associated with being overweight/obese (OR = 1·98; 95 % CI 1·00, 3·90), compared with having ≥ 3 snacks/d.


Lower daily frequency of EO was associated with increased odds of being overweight or obese in children. A higher eating frequency, maintaining the same energy intake, seems to contribute to a healthy body weight in children.


Corresponding author

*Corresponding author: Email


Hide All

Members of the IAN-AF Consortium are listed in the Appendix.



Hide All
1.World Health Organization (2017) Obesity and overweight. (accessed October 2017). Onis, M, Blossner, M & Borghi, E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92, 12571264.
3.Adair, L (2008) Child and adolescent obesity: epidemiology and developmental perspectives. Physiol Behav 94, 816.
4.Reilly, JJ (2005) Descriptive epidemiology and health consequences of childhood obesity. Best Pract Res Clin Endocrinol Metab 19, 327341.
5.Cornette, R (2008) The emotional impact of obesity on children. Worldviews Evid Based Nurs 5, 136141.
6.Field, AE, Camargo, CA Jr, Taylor, CB et al. (1999) Overweight, weight concerns, and bulimic behaviors among girls and boys. J Am Acad Child Adolesc Psychiatry 38, 754760.
7.Reinehr, T, Andler, W, Denzer, C et al. (2005) Cardiovascular risk factors in overweight German children and adolescents: relation to gender, age and degree of overweight. Nutr Metab Cardiovasc Dis 15, 181187.
8.Visser, M, Bouter, LM, McQuillan, GM et al. (2001) Low-grade systemic inflammation in overweight children. Pediatrics 107, E13.
9.Pena, AS, Wiltshire, E, MacKenzie, K et al. (2006) Vascular endothelial and smooth muscle function relates to body mass index and glucose in obese and nonobese children. J Clin Endocrinol Metab 91, 44674471.
10.Meyer, AA, Kundt, G, Steiner, M et al. (2006) Impaired flow-mediated vasodilation, carotid artery intima-media thickening, and elevated endothelial plasma markers in obese children: the impact of cardiovascular risk factors. Pediatrics 117, 15601567.
11.Chiarelli, F & Marcovecchio, ML (2008) Insulin resistance and obesity in childhood. Eur J Endocrinol 159, Suppl. 1, S67S74.
12.Gardner, DS, Hosking, J, Metcalf, BS et al. (2009) Contribution of early weight gain to childhood overweight and metabolic health: a longitudinal study (EarlyBird 36). Pediatrics 123, e67e73.
13.Ramsay, SA, Bloch, TD, Marriage, B et al. (2018) Skipping breakfast is associated with lower diet quality in young US children. Eur J Clin Nutr 72, 548556.
14.Deshmukh-Taskar, PR, Nicklas, TA, O’Neil, CE et al. (2010) The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999–2006. J Am Diet Assoc 110, 869878.
15.Deshmukh-Taskar, P, Nicklas, TA, Radcliffe, JD et al. (2013) The relationship of breakfast skipping and type of breakfast consumed with overweight/obesity, abdominal obesity, other cardiometabolic risk factors and the metabolic syndrome in young adults. The National Health and Nutrition Examination Survey (NHANES): 1999–2006. Public Health Nutr 16, 20732082.
16.Pot, GK, Hardy, R & Stephen, AM (2014) Irregular consumption of energy intake in meals is associated with a higher cardiometabolic risk in adults of a British birth cohort. Int J Obes (Lond) 38, 15181524.
17.Mills, JP, Perry, CD & Reicks, M (2011) Eating frequency is associated with energy intake but not obesity in midlife women. Obesity (Silver Spring) 19, 552559.
18.Howarth, NC, Huang, TT, Roberts, SB et al. (2007) Eating patterns and dietary composition in relation to BMI in younger and older adults. Int J Obes (Lond) 31, 675684.
19.van der Heijden, AA, Hu, FB, Rimm, EB et al. (2007) A prospective study of breakfast consumption and weight gain among US men. Obesity (Silver Spring) 15, 24632469.
20.Canuto, R, da Silva Garcez, A, Kac, G et al. (2017) Eating frequency and weight and body composition: a systematic review of observational studies. Public Health Nutr 20, 20792095.
21.Kaisari, P, Yannakoulia, M & Panagiotakos, DB (2013) Eating frequency and overweight and obesity in children and adolescents: a meta-analysis. Pediatrics 131, 958967.
22.Mesas, AE, Munoz-Pareja, M, Lopez-Garcia, E et al. (2012) Selected eating behaviours and excess body weight: a systematic review. Obes Rev 13, 106135.
23.Leech, RM, Worsley, A, Timperio, A et al. (2015) Understanding meal patterns: definitions, methodology and impact on nutrient intake and diet quality. Nutr Res Rev 28, 121.
24.Johnson, GH & Anderson, GH (2010) Snacking definitions: impact on interpretation of the literature and dietary recommendations. Crit Rev Food Sci Nutr 50, 848871.
25.Jennings, A, Cassidy, A, van Sluijs, EM et al. (2012) Associations between eating frequency, adiposity, diet, and activity in 9–10 year old healthy-weight and centrally obese children. Obesity (Silver Spring) 20, 14621468.
26.Berg, C & Forslund, HB (2015) The influence of portion size and timing of meals on weight balance and obesity. Curr Obes Rep 4, 1118.
27.Lopes, C, Torres, D, Oliveira, A et al. (2018) National Food, Nutrition, and Physical Activity Survey of the Portuguese general population (2015–2016): protocol for design and development. JMIR Res Protoc 7, e42.
28.European Food Safety Authority (2014) Guidance on the EU Menu methodology. EFSA J 12, 39443977.
29.Torres, D, Faria, N, Sousa, N et al. (2017) Inquérito Alimentar Nacional e de Atividade Física, IAN-AF 2015–2016: Manual Fotográfico de Quantificação de Alimentos. Porto: Universidade do Porto.
30.Vilela, S, Lopes, C, Guiomar, S et al. (2018) Validation of a picture book to be used in a pan-European dietary survey. Public Health Nutr 21, 16541663.
31.National Institute of Health Dr Ricardo Jorge (2006) Food Composition Table (in Portuguese). Lisbon: Center of Food Safety and Nutrition.
32.Stewart, A & Marfell-Jones, M (2001) International Standards for Anthropometric Assessment. International Society for the Advancement of Kinanthropometry. (accessed February 2018).
33.WHO Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Geneva: WHO.
34.Tremblay, MS, LeBlanc, AG, Kho, ME et al. (2011) Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act 8, 98.
35.Bouchard, C, Tremblay, A, Leblanc, C et al. (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37, 461467.
36.Goldberg, GR, Black, AE, Jebb, SA et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
37.Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, 541.
38.Torun, B (2005) Energy requirements of children and adolescents. Public Health Nutr 8, 968993.
39.Lumley, T (2004) Analysis of complex survey samples. J Stat Softw 9, 119.
40.Leidy, HJ & Campbell, WW (2011) The effect of eating frequency on appetite control and food intake: brief synopsis of controlled feeding studies. J Nutr 141, 154157.
41.Farshchi, HR, Taylor, MA & Macdonald, IA (2005) Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. Am J Clin Nutr 81, 1624.
42.Alhussain, MH, Macdonald, IA & Taylor, MA (2016) Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: a randomized controlled trial in healthy normal-weight women. Am J Clin Nutr 104, 2132.
43.Murakami, K & Livingstone, MB (2015) Variability in eating frequency in relation to adiposity measures and blood lipid profiles in British children and adolescents: findings from the National Diet and Nutrition Survey. Int J Obes (Lond) 39, 608613.
44.Murakami, K & Livingstone, MB (2014) Associations of eating frequency with adiposity measures, blood lipid profiles and blood pressure in British children and adolescents. Br J Nutr 111, 21762183.
45.Taylor, RW, Iosua, E, Heath, AM et al. (2017) Eating frequency in relation to BMI in very young children: a longitudinal analysis. Public Health Nutr 20, 13721379.
46.Wehling, H & Lusher, J (2017) People with a body mass index 30 under-report their dietary intake: a systematic review. J Health Psychol. Published online: 1 July 2017. doi: 10.1177/1359105317714318.
47.Murakami, K & Livingstone, MB (2015) Prevalence and characteristics of misreporting of energy intake in US adults: NHANES 2003-2012. Br J Nutr 114, 12941303.
48.McDonald, SW, Ginez, HK, Vinturache, AE et al. (2016) Maternal perceptions of underweight and overweight for 6–8 years olds from a Canadian cohort: reporting weights, concerns and conversations with healthcare providers. BMJ Open 6, e012094.
49.Mitchell, R, Wake, M, Canterford, L et al. (2008) Does maternal concern about children’s weight affect children’s body size perception at the age of 6.5?– A community-based study. Int J Obes (Lond) 32, 10011007.
50.Campbell, MW, Williams, J, Hampton, A et al. (2006) Maternal concern and perceptions of overweight in Australian preschool-aged children. Med J Aust 184, 274277.
51.Rietmeijer-Mentink, M, Paulis, WD, van Middelkoop, M et al. (2013) Difference between parental perception and actual weight status of children: a systematic review. Matern Child Nutr 9, 322.


Eating frequency and weight status in Portuguese children aged 3–9 years: results from the cross-sectional National Food, Nutrition and Physical Activity Survey 2015–2016

  • Sofia Vilela (a1) (a2), Daniela Correia (a1), Milton Severo (a1) (a2), Andreia Oliveira (a1) (a2), Duarte Torres (a1) (a3), Carla Lopes (a1) (a2) and the IAN-AF Consortium (a1) (a2) (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed