Skip to main content Accessibility help
×
Home

Diet–obesity associations in children: approaches to counteract attenuation caused by misreporting

  • Claudia Börnhorst (a1), Inge Huybrechts (a2) (a3), Antje Hebestreit (a1), Barbara Vanaelst (a2) (a4), Dénes Molnár (a5), Silvia Bel-Serrat (a6), Theodora Mouratidou (a6), Luis A Moreno (a6), Valeria Pala (a7), Marge Eha (a8), Yiannis A Kourides (a9), Alfonso Siani (a10), Gabriele Eiben (a11) and Iris Pigeot (a1)...

Abstract

Objective

Measurement errors in dietary data lead to attenuated estimates of associations between dietary exposures and health outcomes. The present study aimed to compare and evaluate different approaches of handling implausible reports by exemplary analysis of the association between dietary intakes (total energy, soft drinks, fruits/vegetables) and overweight/obesity in children.

Design

Cross-sectional multicentre study.

Setting

Kindergartens/schools from eight European countries participating in the IDEFICS Study.

Subjects

Children (n 5357) aged 2–9 years who provided one 24 h dietary recall and complete covariate information.

Results

The 24 h recalls were classified into three reporting groups according to adapted Goldberg cut-offs: under-report, plausible report or over-report. In the basic logistic multilevel model (adjusted for age and sex, including study centre as random effect), the dietary exposures showed no significant association with overweight/obesity (energy intake: OR=0·996 (95 % CI 0·983, 1·010); soft drinks: OR = 0·999 (95 % CI 0·986, 1·013)) and revealed even a positive association for fruits/vegetables (OR = 1·009 (95 % CI 1·001, 1·018)). When adding the reporting group (dummy variables) and a propensity score for misreporting as adjustment terms, associations became significant for energy intake as well as soft drinks (energy: OR = 1·074 (95 % CI 1·053, 1·096); soft drinks: OR = 1·015 (95 % CI 1·000, 1·031)) and the association between fruits/vegetables and overweight/obesity pointed to the reverse direction compared with the basic model (OR = 0·993 (95 % CI 0·984, 1·002)).

Conclusions

Associations between dietary exposures and health outcomes are strongly affected or even masked by measurement errors. In the present analysis consideration of the reporting group and inclusion of a propensity score for misreporting turned out to be useful tools to counteract attenuation of effect estimates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diet–obesity associations in children: approaches to counteract attenuation caused by misreporting
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diet–obesity associations in children: approaches to counteract attenuation caused by misreporting
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diet–obesity associations in children: approaches to counteract attenuation caused by misreporting
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email pigeot@bips.uni-bremen.de

References

Hide All
1.Freedman, LS, Schatzkin, A, Midthune, Det al. (2011) Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103, 10861092.
2.Lioret, S, Touvier, M, Balin, Met al. (2011) Characteristics of energy under-reporting in children and adolescents. Br J Nutr 105, 16711680.
3.Livingston, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, Suppl. 3, 895S920S.
4.Black, AE & Cole, TJ (2001) Biased over- or under-reporting is characteristic of individuals whether over time or by different assessment methods. J Am Diet Assoc 101, 7080.
5.Shai, I, Rosner, BA, Shahar, DRet al. (2005) Dietary evaluation and attenuation of relative risk: multiple comparisons between blood and urinary biomarkers, food frequency, and 24-hour recall questionnaires: the DEARR study. J Nutr 135, 573579.
6.Goldberg, GR, Black, AE, Jebb, SAet al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
7.McCrory, MA, Hajduk, CL & Roberts, SB (2002) Procedures for screening out inaccurate reports of dietary energy intake. Public Health Nutr 5, 873882.
8.Nielsen, SJ & Adair, L (2007) An alternative to dietary data exclusions. J Am Diet Assoc 107, 792799.
9.Huang, TT, Roberts, SB, Howarth, NCet al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 13, 12051217.
10.Mendez, MA, Wynter, S, Wilks, Ret al. (2004) Under- and overreporting of energy is related to obesity, lifestyle factors and food group intakes in Jamaican adults. Public Health Nutr 7, 919.
11.Howarth, NC, Huang, TT, Roberts, SBet al. (2005) Dietary fiber and fat are associated with excess weight in young and middle-aged US adults. J Am Diet Assoc 105, 13651372.
12.Gibson, RS (2005) Principles of Nutritional Assessment, 2nd ed. New York: Oxford University Press.
13.Rosenbaum, PR & Rubin, DB (1983) The central role of the propensity score in observational studies for causal effects. Biometrika 70, 4155.
14.Mendez, MA, Popkin, BM, Buckland, Get al. (2011) Alternative methods of accounting for underreporting and overreporting when measuring dietary intake–obesity relations. Am J Epidemiol 173, 448458.
15.Livingstone, MB & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.
16.Ahrens, W, Bammann, K, de Henauw, Set al. (2006) Understanding and preventing childhood obesity and related disorders – IDEFICS: a European multilevel epidemiological approach. Nutr Metab Cardiovasc Dis 16, 302308.
17.Ahrens, W, Bammann, K, Siani, Aet al. (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond) 35, Suppl 1, S3S15.
18.Cole, TJ, Bellizzi, MC, Flegal, KMet al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
19.Cole, TJ, Flegal, KM, Nicholls, Det al. (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335, 194.
20.Vereecken, CA, Covents, M, Sichert-Hellert, Wet al. (2008) Development and evaluation of a self-administered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes (Lond) 32, Suppl. 5, S26S34.
21.Vereecken, CA, Covents, M, Matthys, Cet al. (2005) Young adolescents’ nutrition assessment on computer (YANA-C). Eur J Clin Nutr 59, 658667.
22.Zurriaga, O, Perez-Panades, J, Quiles Izquierdo, Jet al. (2011) Factors associated with childhood obesity in Spain. The OBICE study: a case–control study based on sentinel networks. Public Health Nutr 14, 11051113.
23.O'Connor, TM, Yang, SJ & Nicklas, TA (2006) Beverage intake among preschool children and its effect on weight status. Pediatrics 118, e1010e1018.
24.Alinia, S, Hels, O & Tetens, I (2009) The potential association between fruit intake and body weight – a review. Obes Rev 10, 639647.
25.Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, 541.
26.Sichert-Hellert, W, Kersting, M & Schoch, G (1998) Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss 37, 242251.
27.Nelson, M, Black, AE, Morris, JAet al. (1989) Between- and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr 50, 155167.
28.Black, AE (2000) Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord 24, 11191130.
29.Torun, B, Davies, PS, Livingstone, MBet al. (1996) Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur J Clin Nutr 50, Suppl.1, S37S80.
30.Börnhorst, C, Huybrechts, I, Ahrens, Wet al. (2012) Prevalence and determinants of misreporting among European children in proxy-reported 24-hour dietary recalls. Br J Nutr (Epublication ahead of print version).
31.Cole, TJ, Freeman, JV & Preece, MA (1998) British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med 17, 407429.
32.Cole, TJ, Freeman, JV & Preece, MA (1995) Body mass index reference curves for the UK, 1990. Arch Dis Child 73, 2529.
33.Heitmann, BL, Lissner, L & Osler, M (2000) Do we eat less fat, or just report so? Int J Obes Relat Metab Disord 24, 435442.
34.Tohill, BC, Seymour, J, Serdula, Met al. (2004) What epidemiologic studies tell us about the relationship between fruit and vegetable consumption and body weight. Nutr Rev 62, 365374.
35.Rolls, BJ, Drewnowski, A & Ledikwe, JH (2005) Changing the energy density of the diet as a strategy for weight management. J Am Diet Assoc 105, 5 Suppl. 1, S98S103.
36.Savage, JS, Mitchell, DC, Smiciklas-Wright, Het al. (2008) Plausible reports of energy intake may predict body mass index in pre-adolescent girls. J Am Diet Assoc 108, 131135.
37.Greenland, S & Robins, JM (1985) Confounding and misclassification. Am J Epidemiol 122, 495506.
38.Spiegelman, D, McDermott, A & Rosner, B (1997) Regression calibration method for correcting measurement-error bias in nutritional epidemiology. Am J Clin Nutr 65, 4 Suppl., 1179S1186S.
39.Freedman, LS, Midthune, D, Carroll, RJet al. (2011) Using regression calibration equations that combine self-reported intake and biomarker measures to obtain unbiased estimates and more powerful tests of dietary associations. Am J Epidemiol 174, 12381245.
40.Kaaks, R, Riboli, E & van Staveren, W (1995) Calibration of dietary intake measurements in prospective cohort studies. Am J Epidemiol 142, 548556.
41.Livingstone, MB, Robson, PJ, Black, AEet al. (2003) An evaluation of the sensitivity and specificity of energy expenditure measured by heart rate and the Goldberg cut-off for energy intake: basal metabolic rate for identifying mis-reporting of energy intake by adults and children: a retrospective analysis. Eur J Clin Nutr 57, 455463.
42.Kipnis, V, Subar, AF, Midthune, Det al. (2003) Structure of dietary measurement error: results of the OPEN biomarker study. Am J Epidemiol 158, 1421.
43.Carroll, RJ, Midthune, D, Subar, AFet al. (2012) Taking advantage of the strengths of 2 different dietary assessment instruments to improve intake estimates for nutritional epidemiology. Am J Epidemiol 175, 340347.
44.de Boer, EJ, Slimani, N, van't Veer, Pet al. (2011) The European Food Consumption Validation Project: conclusions and recommendations. Eur J Clin Nutr 65, Suppl.1, S102S107.
45.Westerterp, KR & Goris, AH (2002) Validity of the assessment of dietary intake: problems of misreporting. Curr Opin Clin Nutr Metab Care 5, 489493.
46.Freedman, LS, Tasevska, N, Kipnis, Vet al. (2010) Gains in statistical power from using a dietary biomarker in combination with self-reported intake to strengthen the analysis of a diet–disease association: an example from CAREDS. Am J Epidemiol 172, 836842.
47.Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.
48.Kipnis, V, Freedman, LS, Brown, CCet al. (1997) Effect of measurement error on energy-adjustment models in nutritional epidemiology. Am J Epidemiol 146, 842855.
49.Lafay, L, Mennen, L, Basdevant, Aet al. (2000) Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS) study. Int J Obes Relat Metab Disord 24, 15001506.
50.Nielsen, SB, Montgomery, C, Kelly, LAet al. (2008) Energy intake variability in free-living young children. Arch Dis Child 93, 971973.

Keywords

Diet–obesity associations in children: approaches to counteract attenuation caused by misreporting

  • Claudia Börnhorst (a1), Inge Huybrechts (a2) (a3), Antje Hebestreit (a1), Barbara Vanaelst (a2) (a4), Dénes Molnár (a5), Silvia Bel-Serrat (a6), Theodora Mouratidou (a6), Luis A Moreno (a6), Valeria Pala (a7), Marge Eha (a8), Yiannis A Kourides (a9), Alfonso Siani (a10), Gabriele Eiben (a11) and Iris Pigeot (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed