Skip to main content Accessibility help
×
Home

Dietary patterns and the risk of metabolic syndrome in Chinese adults: a population-based cross-sectional study

  • Zhi-Yong Wei (a1), Jun-Jie Liu (a2), Xue-Mei Zhan (a1), Hao-Miao Feng (a3) and Yuan-Yuan Zhang (a4)...

Abstract

Objective

Data on dietary patterns in relation to the risk of metabolic syndrome (MetS) in a middle-aged Chinese population are sparse. The present study was performed to determine the major dietary patterns among a population aged 45–59 years and to evaluate their associations with MetS risk in China.

Design

Cross-sectional examination of the association between dietary patterns and MetS. Face-to-face interviews were used to assess dietary intake using a validated semi-quantitative FFQ. OR and 95 % CI for MetS were calculated across quartiles of dietary pattern scores using multivariate logistic regression analysis models.

Setting

City of Linyi, Shandong Province, China.

Subjects

Adults (n 1918) aged 45–59 years.

Results

Three major dietary patterns were identified: traditional Chinese, animal food and high-energy. After adjustment for potential confounders, individuals in the highest quartile of the traditional Chinese pattern had a reduced risk of MetS relative to the lowest quartile (OR=0·72, 95 % CI 0·596, 0·952; P<0·05). Compared with those in the lowest quartile, individuals in the highest quartile of the animal food pattern had a greater risk of MetS (OR=1·28; 95 % CI 1·103, 1·697; P<0·05). No significant association was observed between the high-energy pattern and risk of MetS.

Conclusions

These findings indicate that the traditional Chinese pattern was associated with a reduced risk, while the animal food pattern was associated with increased risk of MetS. Given the cross-sectional nature of our study, further prospective studies are warranted to confirm these findings.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary patterns and the risk of metabolic syndrome in Chinese adults: a population-based cross-sectional study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary patterns and the risk of metabolic syndrome in Chinese adults: a population-based cross-sectional study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary patterns and the risk of metabolic syndrome in Chinese adults: a population-based cross-sectional study
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

*Corresponding author: Email zhangyuanyuan181@126.com

References

Hide All
1. Grundy, SM, Brewer, HB Jr, Cleeman, JI et al. (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433438.
2. Won, KB, Chang, HJ, Niinuma, H et al. (2015) Inverse association between central obesity and arterial stiffness in Korean subjects with metabolic syndrome: a cross-sectional cohort study. Diabetol Metab Syndr 7, 3.
3. Choi, JH, Woo, HD, Lee, JH et al. (2015) Dietary patterns and risk for metabolic syndrome in Korean women: a cross-sectional study. Medicine (Baltimore) 94, e1424.
4. Song, QB, Zhao, Y, Liu, YQ et al. (2015) Sex difference in the prevalence of metabolic syndrome and cardiovascular-related risk factors in urban adults from 33 communities of China: the CHPSNE study. Diabetes Vasc Dis Res 12, 189198.
5. Ambrosini, GL, Huang, RC, Mori, TA et al. (2010) Dietary patterns and markers for the metabolic syndrome in Australian adolescents. Nutr Metab Cardiovasc Dis 20, 274283.
6. He, Y, Li, Y, Lai, J et al. (2013) Dietary patterns as compared with physical activity in relation to metabolic syndrome among Chinese adults. Nutr Metab Cardiovasc Dis 23, 920928.
7. Esmaillzadeh, A, Mirmiran, P & Azizi, F (2005) Whole-grain consumption and the metabolic syndrome: a favorable association in Tehranian adults. Eur J Clin Nutr 59, 353362.
8. Lim, H, Kim, SY, Wang, Y et al. (2014) Preservation of a traditional Korean dietary pattern and emergence of a fruit and dairy dietary pattern among adults in South Korea: secular transitions in dietary patterns of a prospective study from 1998 to 2010. Nutr Res 34, 760770.
9. Zheng, PF, Shu, L, Si, CJ et al. (2016) Dietary patterns and chronic obstructive pulmonary disease: a meta-analysis. COPD 13, 515522.
10. He, DH, Yang, M, Zhang, RH et al. (2015) Dietary patterns associated metabolic syndrome in Chinese adults. Biomed Environ Sci 28, 370373.
11. Gadgil, MD, Anderson, CA, Kandula, NR et al. (2015) Dietary patterns are associated with metabolic risk factors in South Asians living in the United States. J Nutr 145, 12111217.
12. Xu, SH, Qiao, N, Huang, JJ et al. (2016) Gender differences in dietary patterns and their association with the prevalence of metabolic syndrome among Chinese: a cross-sectional study. Nutrients 8, 180.
13. Yakub, M, Iqbal, MP & Iqbal, R (2010) Dietary patterns are associated with hyperhomocysteinemia in an urban Pakistani population. J Nutr 140, 12611266.
14. Shu, L, Zheng, PF, Zhang, XY et al. (2015) Association between dietary patterns and the indicators of obesity among Chinese: a cross-sectional study. Nutrients 7, 79958009.
15. Yu, XL, Shu, L, Shen, XM et al. (2017) Gender difference on the relationship between hyperuricemia and nonalcoholic fatty liver disease among Chinese: an observational study. Medicine (Baltimore) 96, e8164.
16. Alberti, KG, Eckel, RH, Grundy, SM et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 16401645.
17. Baik, I, Lee, M, Jun, NR et al. (2013) A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. Nutr Res Pract 7, 233241.
18. Musso, G, Gambino, R, De Michieli, F et al. (2003) Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 37, 909916.
19. McKeown, NM, Meigs, JB, Liu, S et al. (2004) Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27, 538546.
20. Williams, DE, Prevost, AT, Whichelow, MJ et al. (2000) A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br J Nutr 83, 257266.
21. Esmaillzadeh, A, Kimiagar, M, Mehrabi, Y et al. (2006) Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84, 14891497.
22. Kim, J & Choi, YH (2016) Physical activity, dietary vitamin C, and metabolic syndrome in the Korean adults: the Korea National Health and Nutrition Examination Survey 2008 to 2012. Public Health 135, 3037.
23. Hosseini-Esfahani, F, Mirmiran, P, Daneshpour, MS et al. (2014) Western dietary pattern interaction with APOC3 polymorphism in the risk of metabolic syndrome: Tehran Lipid and Glucose Study. J Nutrigenet Nutrigenomics 7, 105117.
24. Woo, HD, Shin, A & Kim, J (2014) Dietary patterns of Korean adults and the prevalence of metabolic syndrome: a cross-sectional study. PLoS One 9, e111593.
25. Sun, L, Franco, OH, Hu, FB et al. (2008) Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly Chinese. J Clin Endocrinol Metab 93, 46904696.
26. Bozzini, C, Girelli, D, Olivieri, O et al. (2005) Prevalence of body iron excess in the metabolic syndrome. Diabetes Care 28, 20612063.
27. Azadbakht, L & Esmaillzadeh, A (2009) Red meat intake is associated with metabolic syndrome and the plasma C-reactive protein concentration in women. J Nutr 139, 335339.
28. Welty, FK, Alfaddagh, A & Elajami, TK (2016) Targeting inflammation in metabolic syndrome. Transl Res 167, 257280.
29. Yan, YZ, Ma, RL, Ding, YS et al. (2015) Association of inflammation with metabolic syndrome among low-income rural Kazakh and Uyghur adults in far western China. Mediators Inflamm 2015, 706768.
30. Wickramatilake, CM, Mohideen, MR & Pathirana, C (2015) Association of metabolic syndrome with testosterone and inflammation in men. Ann Endocrinol (Paris) 76, 260263.
31. Brown, IJ, Tzoulaki, I, Candeias, V et al. (2009) Salt intakes around the world: implications for public health. Int J Epidemiol 38, 791813.
32. Baik, I & Shin, C (2008) Prospective study of alcohol consumption and metabolic syndrome. Am J Clin Nutr 87, 14551463.
33. Juanola-Falgarona, M, Salas-Salvado, J, Buil-Cosiales, P et al. (2015) Dietary glycemic index and glycemic load are positively associated with risk of developing metabolic syndrome in middle-aged and elderly adults. J Am Geriatr Soc 63, 19912000.
34. Feng, R, Du, S, Chen, Y et al. (2015) High carbohydrate intake from starchy foods is positively associated with metabolic disorders: a cohort study from a Chinese population. Sci Rep 5, 16919.
35. DiBello, JR, McGarvey, ST, Kraft, P et al. (2009) Dietary patterns are associated with metabolic syndrome in adult Samoans. J Nutr 139, 19331943.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed