Skip to main content Accessibility help
×
Home

Designing healthier and acceptable diets using data envelopment analysis

  • Argyris Kanellopoulos (a1), Johanna C Gerdessen (a1), Ante Ivancic (a1), Johanna M Geleijnse (a2) (a3), Jacqueline M Bloemhof-Ruwaard (a1) and Pieter van’t Veer (a2)...

Abstract

Objective:

The objective of this research is to propose methodology that can be used to benchmark current diets based on their nutrient intakes and to provide guidelines for improving less healthy diets in a way that is acceptable for the studied population.

Design:

We discuss important limitations of current diet models that use optimisation techniques to design healthier and acceptable diets. We illustrate how data envelopment analysis could be used to overcome such limitations, and we describe mathematical models that can be used to calculate not only healthier but also acceptable diets.

Setting:

We used data from the Nutrition Questionnaires plus dataset of habitual diets of a general population of adult men and women in The Netherlands (n 1735).

Participants:

Adult population.

Results:

We calculated healthier diets with substantial higher intakes of protein, fibre, Fe, Ca, K, Mg and vitamins, and substantially lower intakes of Na, saturated fats and added sugars. The calculated diets are combinations of current diets of individuals that belong to the same age/gender group and comprise of food item intakes in proportions observed in the sample.

Conclusions:

The proposed methodology enables the benchmarking of existing diets and provides a framework for proposing healthier alternative diets that resemble the current diet in terms of foods intake as much as possible.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Designing healthier and acceptable diets using data envelopment analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Designing healthier and acceptable diets using data envelopment analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Designing healthier and acceptable diets using data envelopment analysis
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email argyris.kanellopoulos@wur.nl

References

Hide All
1.Tilman, D, Yang, Y, Chen, Yet al. (2014) Global diets link environmental sustainability and human health. Nature 515, 518522.
2.Green, R, Milner, J, Dangour, ADet al. (2015) The potential to reduce greenhouse gas emissions in the UK through healthy and realistic dietary change. Clim Change 129, 253265.
3.Springmann, M, Godfray, HCJ, Rayner, Met al. (2016) Analysis and valuation of the health and climate change co-benefits of dietary change. Proc Natl Acad Sci 113, 41464151.
4.Buttriss, JL, Briend, A, Darmon, Net al. (2014) Diet modelling: how it can inform the development of dietary recommendations and public health policy. Nutr Bull 39, 115125.
5.Gerdessen, JM & de Vries, JHM (2015) Diet models with linear goal programming: impact of achievement functions. Eur J Clin Nutr 69, 12721278.
6.Ribal, J, Fenollosa, ML, Garca-Segovia, Pet al. (2016) Designing healthy, climate friendly and affordable school lunches. Int J Life Cycle Assess 21, 631645.
7.Gazan, R, Brouzes, CMC, Vieux, Fet al. (2018) Mathematical optimization to explore tomorrow’s sustainable diets: a narrative review. Adv Nutr 9, 602616.
8.Maillot, M, Vieux, F, Amiot, MJet al. (2010) Individual diet modeling translates nutrient recommendations into realistic and individual specific food choices. Am J Clin Nutr 91, 421430.
9.Mertens, E, van’t Veer, P, Hiddink, GJet al. (2017) Operationalising the health aspects of sustainable diets: a review. Public Health Nutr 20, 739757.
10.Cooper, WW, Seiford, LM & Kaoru, T (2007) Data Envelopment Analysis. New York: Springer.
11.Zhou, H, Yang, Y, Chen, Yet al. (2018) Data envelopment analysis application in sustainability: the origins, development and future directions. Eur J Oper Res 264, 116.
12.Barr, RS, Seiford, LM & Siems, TF (1993) An envelopment-analysis approach to measuring the managerial efficiency of banks. Ann Oper Res 45, 119.
13.Liu, JS, Lu, LYY, Lu, WMet al. (2013) A survey of DEA applications. Omega 41, 893902.
14.Thanassoulis, E, Kortelainen, M, Johnes, Get al. (2011) Costs and efficiency of higher education institutions in England: a DEA analysis. J Oper Res Soc 62, 12821297.
15.Chilingerian, JA & David Sherman, H (1996) Benchmarking physician practice patterns with DEA: a multi-stage approach for cost containment. Ann Oper Res 67, 83116.
16.Brouwer-Brolsma, EM, van Lee, L, Streppel, MTet al. (2018) Nutrition Questionnaires plus (NQplus) study, a prospective study on dietary determinants and cardiometabolic health in Dutch adults. BMJ Open 8, e020228.
17.Drewnowski, A (2009) Defining nutrient density: development and validation of the nutrient rich foods index. J Am Coll Nutr 28, 421S426S.
18.Fulgoni, VL, Keast, DR & Drewnowski, A (2009) Development and validation of the nutrient-rich foods index: a tool to measure nutritional quality of foods. J Nutr 139, 15491554.
19.EFSA (2018) Dietary Reference Values and Dietary Guidelines. Parma, Italy: European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed April 2020).
20.Institute of Medicine (IOM) (2018) Nutrient Recommendations: Dietary Reference Intakes (DRI). Washington, DC, USA: The National Academies Press. https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx (accessed April 2020).
21.NEVO (2016) Nutrient Recommendations: Dietary Reference Intakes (DRI). Bilthoven, The Netherlands: National Institute for Public Health and the Environment. https://www.rivm.nl/en/dutch-food-composition-database/access-nevo-data/nevo-online (accessed April 2020).
22.Mertens, E, Kuijsten, A, Dofkova, Met al. (2019) Geographic and socioeconomic diversity of food and nutrient intakes: a comparison of four European countries. Eur J Nutr 58, 14751493.
23.EFSA (2020) The EFSA Comprehensive European Food Consumption Database. Parma, Italy: European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en/food-consumption/comprehensive-database (accessed April 2020).
24.Dyson, RG & Shale, EA (2010) Data envelopment analysis, operational research and uncertainty. J Oper Res Soc 61, 2534.
25.Sarkis, J (2007) Preparing your Data for DEA. Boston, MA: Springer US.
26.Cook, WD & Seiford, LM (2009) Data envelopment analysis (DEA), thirty years on. Eur J Oper Res 192, 117.
27.Chen, Y, Cook, WD, Du, Jet al. (2017) Bounded and discrete data and Likert scales in data envelopment analysis: application to regional energy efficiency in China. Ann Oper Res 255, 347366.

Keywords

Type Description Title
WORD
Supplementary materials

Kanellopoulos et al. supplementary material
Appendix A-C

 Word (253 KB)
253 KB

Designing healthier and acceptable diets using data envelopment analysis

  • Argyris Kanellopoulos (a1), Johanna C Gerdessen (a1), Ante Ivancic (a1), Johanna M Geleijnse (a2) (a3), Jacqueline M Bloemhof-Ruwaard (a1) and Pieter van’t Veer (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.