Skip to main content Accessibility help
×
×
Home

Conventional analyses of data from dietary validation studies may misestimate reporting accuracy: illustration from a study of the effect of interview modality on children's reporting accuracy

  • Albert F Smith (a1), Suzanne Domel Baxter (a2), James W Hardin (a3) and Michele D Nichols (a4)

Abstract

Objective

To compare two approaches to analysing energy- and nutrient-converted data from dietary validation (and relative validation) studies – conventional analyses, in which the accuracy of reported items is not ascertained, and reporting-error-sensitive analyses, in which reported items are classified as matches (items actually eaten) or intrusions (items not actually eaten), and reported amounts are classified as corresponding or overreported.

Design

Subjects were observed eating school breakfast and lunch, and interviewed that evening about that day's intake. For conventional analyses, reference and reported information were converted to energy and macronutrients; then t-tests, correlation coefficients and report rates (reported/reference) were calculated. For reporting error-sensitive analyses, reported items were classified as matches or intrusions, reported amounts were classified as corresponding or overreported, and correspondence rates (corresponding amount/reference amount) and inflation ratios (overreported amount/reference amount) were calculated.

Subjects

Sixty-nine fourth-grade children (35 girls) from 10 elementary schools in Georgia (USA).

Results

For energy and each macronutrient, conventional analyses found that reported amounts were significantly less than reference amounts (every P < 0.021; paired t-tests); correlations between reported and reference amounts exceeded 0.52 (every P < 0.001); and median report rates ranged from 76% to 95%. Analyses sensitive to reporting errors found median correspondence rates between 67% and 79%, and that median inflation ratios, which ranged from 7% to 17%, differed significantly from 0 (every P < 0.0001; sign tests).

Conclusions

Conventional analyses of energy and nutrient data from dietary reporting validation (and relative validation) studies may overestimate accuracy and mask the complexity of dietary reporting error.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Conventional analyses of data from dietary validation studies may misestimate reporting accuracy: illustration from a study of the effect of interview modality on children's reporting accuracy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Conventional analyses of data from dietary validation studies may misestimate reporting accuracy: illustration from a study of the effect of interview modality on children's reporting accuracy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Conventional analyses of data from dietary validation studies may misestimate reporting accuracy: illustration from a study of the effect of interview modality on children's reporting accuracy
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email: a.f.smith@csuohio.edu

References

Hide All
1Masson, IF, McNeill, G, Tomany, JO, Simpson, JA, Pearce, HS, Wei, L, et al. . Statistical approaches for assessing the relative validity of a food frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutrition 2003; 6: 313–21.
2Achterberg, C, Pugh, MA, Collins, S, Getty, VM, Shannon, B. Feasibility of telephone interviews to collect dietary recall information from children. Journal of the Canadian Dietetic Association 1991; 52: 226–8.
3Bransby, ER, Daubney, CG, King, J. Comparison of results obtained by different methods of individual dietary survey. British Journal of Nutrition 1948; 2: 89110.
4Carter, RL, Sharbaugh, CO, Stapell, CA. Reliability and validity of the 24-hour recall. Journal of the American Dietetic Association 1981; 79: 542–7.
5Conway, JM, Ingwersen, LA, Vinyard, BT, Moshfegh, AJ. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. American Journal of Clinical Nutrition 2003; 77: 1171–8.
6Conway, J, Ingwersen, L, Moshfegh, AJ. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. Journal of the American Dietetic Association 2004; 104: 595603.
7Crawford, PB, Obarzanek, E, Morrison, J, Sabry, ZI. Comparative advantage of 3-day food records over 24-hour recall and 5-day food frequency validated by observation of 9- and 10-year-old girls. Journal of the American Dietetic Association 1994; 94: 626–30.
8Emmons, L, Hayes, M. Accuracy of 24-hr recalls of young children. Journal of the American Dietetic Association 1973; 62: 409–15.
9Lytle, LA, Nichaman, MZ, Obarzanek, E, Glovsky, E, Montgomery, D, Nicklas, T, et al. . Validation of 24-hour recalls assisted by food records in third-grade children. Journal of the American Dietetic Association 1993; 93: 1431–6.
10Lytle, LA, Murray, DM, Perry, CL, Eldridge, AL. Validating fourth-grade students' self-report of dietary intake: results from the 5-A-Day Power Plus program. Journal of the American Dietetic Association 1998; 98: 570–2.
11Weber, JL, Lytle, L, Gittelsohn, J, Cunningham-Sabo, L, Heller, K, Anliker, JA, et al. . Validity of self-reported dietary intake at school meals by American Indian children: The Pathways Study. Journal of the American Dietetic Association 2004; 104: 746–52.
12Reynolds, LA, Johnson, SB, Silverstein, J. Assessing daily diabetes management by 24-hour recall interview: the validity of children's reports. Journal of Pediatric Psychology 1990; 15: 493509.
13Samuelson, G. An epidemiological study of child health and nutrition in a northern Swedish county. II. Methodological study of the recall technique. Nutrition & Metabolism 1970; 12: 321–40.
14Todd, KS, Kretsch, MJ. Accuracy of the self-reported dietary recall of new immigrant and refugee children. Nutrition Research 1986; 6: 1031–43.
15Smith, AF. Cognitive processes in long-term dietary recall. Vital and Health Statistics 1991; 6(4). Also available at http://www.cdc.gov/nchs/data/series/sr_06/sr06_004.pdf. Accessed 31 January 2007.
16Smith, AF, Jobe, JB, Mingay, DJ. Retrieval from memory of dietary information. Applied Cognitive Psychology 1991; 5: 269–96.
17Baxter, SD, Thompson, WO, Litaker, MS, Guinn, CH, Frye, FHA, Baglio, ML, et al. . Accuracy of fourth-graders' dietary recalls of school breakfast and school lunch validated with observations: in-person versus telephone interviews. Journal of Nutrition Education and Behavior 2003; 35: 124–34.
18Baxter, SD, Thompson, WO, Litaker, MS, Frye, FHA, Guinn, CH. Low accuracy and low consistency of fourth-graders' school breakfast and school lunch recalls. Journal of the American Dietetic Association 2002; 102: 386–95.
19Baxter, SD, Thompson, WO, Smith, AF, Litaker, MS, Yin, Z, Frye, FHA, et al. . Reverse versus forward order reporting and the accuracy of fourth-graders' recalls of school breakfast and school lunch. Preventive Medicine 2003; 36: 601–14.
20Simons-Morton, BG, Forthofer, R, Huang, IW, Baranowski, T, Reed, DB, Fleishman, R. Reliability of direct observation of schoolchildren's consumption of bag lunches. Journal of the American Dietetic Association 1992; 92: 219–21.
21Simons-Morton, BG, Baranowski, T. Observation in assessment of children's dietary practices. Journal of School Health 1991; 61: 204–7.
22Baxter, SD, Thompson, WO, Davis, HC. Trading of food during school lunch by first- and fourth-grade children. Nutrition Research 2001; 21: 499503.
23Baglio, ML, Baxter, SD, Guinn, CH, Thompson, WO, Shaffer, NM, Frye, FHA. Assessment of inter-observer reliability in nutrition studies that use direct observation of school meals. Journal of the American Dietetic Association 2004; 104: 1385–93.
24Shaffer, NM, Baxter, SD, Thompson, WO, Baglio, ML, Guinn, CH, Frye, FHA. Quality control for interviews to obtain dietary recalls from children for research studies. Journal of the American Dietetic Association 2004; 104: 1577–85.
25Hu, FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Current Opinion in Lipidology 2002; 13: 39.
26Hu, FB, Rimm, E, Smith-Warner, SA, Feskanich, D, Stampfer, MJ, Ascherio, A, et al. . Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. American Journal of Clinical Nutrition 1999; 69: 243–9.
27Kant, AH. Dietary patterns and health outcomes. Journal of the American Dietetic Association 2004; 104: 615–35.
28Choi, HK, Willett, WC, Stampfer, MJ, Rimm, E, Hu, FB. Dairy consumption and risk of type 2 diabetes mellitus in men. Archives of Internal Medicine 2005; 165: 9971003.
29Shin, MH, Holmes, MD, Hankinson, SE, Wu, K, Colditz, GA, Willett, WC. Intake of diary products, calcium, and vitamin D and risk of breast cancer. Journal of the National Cancer Institute 2002; 94: 1301–11.
30Pereira, MA, Jacobs, DR, Van Horn, L, Slattery, ML, Kartashov, AI, Ludwig, DS. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA study. JAMA: Journal of the American Medical Association 2002; 287: 2081–9.
31Baech, SB, Hansen, M, Bukhave, K, Jensen, M, Sorensen, SS, Kristensen, L, et al. . Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. American Journal of Clinical Nutrition 2003; 77: 173–9.
32Rosner, B, Gore, R. Measurement error correction in nutritional epidemiology based on individual foods, with application to the relation of diet to breast cancer. American Journal of Epidemiology 2001; 154: 827–35.
33Baxter, SD, Smith, AF, Guinn, CH, Thompson, WO, Litaker, MS, Baglio, ML, et al. . Interview format influences the accuracy of children's dietary recalls validated with observations. Nutrition Research 2003; 23: 1537–46.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Public Health Nutrition
  • ISSN: 1368-9800
  • EISSN: 1475-2727
  • URL: /core/journals/public-health-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed