Skip to main content Accessibility help
×
Home

Constituent analysis of iodine intake in Armenia

  • Nicholas Hutchings (a1) (a2) (a3), Elena Aghajanova (a1) (a4), Sisak Baghdasaryan (a5), Mushegh Qefoyan (a1) (a6), Catherine Sullivan (a7), Xuemei He (a7), Frits van der Haar (a8) (a9), Lewis Braverman (a7) and John P Bilezikian (a3) (a10)...

Abstract

Objective

We sought to assess the universal salt iodization (USI) strategy in Armenia by characterizing dietary iodine intake from naturally occurring iodine, salt-derived iodine in processed foods and salt-derived iodine in household-prepared foods.

Design

Using a cross-sectional cluster survey model, we collected urine samples which were analysed for iodine and sodium concentrations (UIC and UNaC) and household salt samples which were analysed for iodine concentration (SI). SI and UNaC data were used as explanatory variables in multiple linear regression analyses with UIC as dependent variable, and the regression parameters were used to estimate the iodine intake sources attributable to native iodine and iodine from salt in processed foods and household salt.

Setting

Armenia is naturally iodine deficient; in 2004, the government mandated a USI strategy.

Subjects

We recruited school-age children (SAC), pregnant women (PW) and non-pregnant women of reproductive age (WRA).

Results

From thirteen sites covering all provinces, sufficient urine and table salt samples were obtained from 312 SAC, 311 PW and 332 WRA. Findings revealed significant differences between groups: contribution of native iodine ranged from 81% in PW to 46% in SAC, while household salt-derived iodine contributed from 19% in SAC to 1% in PW.

Conclusions

Differences between groups may reflect differences in diet. In all groups, household and processed food salt constituted a significant part of total iodine intake, highlighting the success and importance of USI in ensuring iodine sufficiency. There appears to be leeway to reduce salt intake without adversely affecting the iodine status of the population in Armenia.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Constituent analysis of iodine intake in Armenia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Constituent analysis of iodine intake in Armenia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Constituent analysis of iodine intake in Armenia
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Email nicholas.hutchings@uci.edu

References

Hide All
1. Leung, A, Braverman, L & Pearce, E (2012) History of US iodine fortification and supplementation. Nutrients 4, 17401746.
2. Jameson, J, Mandel, S & Weetman, A (2012) Disorders of the thyroid gland. In Harrison’s Principles of Internal Medicine, 18th ed., chapter 341 [D Kasper, A Fauci, S Hauser et al., editors]. New York: McGraw-Hill. http://accessmedicine.mhmedical.com/content.aspx?bookid=1130&sectionid=79751787 (accessed March 2018).
3. World Health Organization (2007) Assessment of Iodine Deficiency Disorders and Monitoring their Elimination: A Guide for Programme Managers, 3rd ed. Geneva: WHO.
4. Ghazarian, HG (1979) On peculiarities of thyroid gland in inhabitants of three different areas of the Armenian SSR. J Exp Clin Med XIX, 115–122.
5. Karamian, RK (1981) On the state of the thyroid glands in inhabitants of Zangezour regions of the Armenian SSR. J Exp Clin Med XXI, 74–77.
6. Ministry of Health (2005) Report on Results of National Representative Survey of Iodine Nutrition and Implementation of Universal Salt Iodization Program in Armenia. Yerevan: Ministry of Health of the Republic of Armenia & UNICEF Representative Office in Armenia.
7. Rossi, L & Branca, F (2003) Salt iodisation and public health campaigns to eradicate iodine deficiency disorders in Armenia. Public Health Nutr 6, 463469.
8. Government of Armenia (2004) Government of Armenia Decree of 12 February 2004, # 353-N on the approval of the national programme for control and prevention of dietary iodine deficiency among the population of Republic of Armenia, the timetable for the plan of priority actions (developed for 2004–2007), as well as amendment to the Government Decree #902, dated 31 December 2000 . Yerevan: Government of Armenia.
9. UNICEF (2005) Armenia: Prevention of Iodine Deficiencies Disorders – 2005 Annual Progress Report. Yerevan: UNICEF Armenia.
10. Hutchings, N, Aghajanova, A, Baghdasaryan, S et al. (2017) Iodine nutrition in Armenia: a model of representative surveillance (abstract). 87th Annual Meeting of the American Thyroid Association. Thyroid 27, Suppl. 1, P-1-A–156.
11. Institute of Medicine, Food and Nutrition Board (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.
12. Nimmons, G, Funk, G, Graham, M et al. (2013) Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol Head Neck Surg 139, 479482.
13. Benotti, J, Benotti, N, Pino, S et al. (1965) Determination of total iodine in urine, stool, diets, and tissue. Clin Chem 11, 932936.
14. Zimmermann, M, Hussein, I, al Ghannami, S et al. (2016) Estimation of the prevalence of inadequate and excessive iodine intakes in school-age children from the adjusted distribution of urinary iodine concentrations from population surveys. J Nutr 146, 12041211.
15. Institute of Medicine Subcommittee on Interpretation and Uses of Dietary Reference Intakes & the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2003) Dietary Reference Intakes: Applications in Dietary Planning. Washington, DC: National Academies Press.
16. Charlton, K, Batterham, M, Buchanan, L et al. (2014) Intra-individual variation in urinary iodine concentrations: effect of adjustment on population distribution using two and three repeated spot urine collections. BMJ Open 4, e003799.
17. Mackerras, D, Singh, G & Eastman, C (2011) Iodine status of Aboriginal teenagers in the Darwin region before mandatory iodine fortification of bread. Med J Aust 7 194, 126130.
18. Van der Haar, F, Knowles, J, Bukania, Z et al. (2018) New statistical approach to apportion dietary sources of iodine intake: findings from Kenya, Senegal and India. Nutrients 10, E430.
19. Johner, S, Boeing, H, Thamm, M et al. (2015) Urinary 24-h creatinine excretion in adults and its use as a simple tool for the estimation of daily urinary analyte excretion from analyte/creatinine ratios in populations. Eur J Clin Nutr 69, 13361343.
20. Xu, J, Wang, M, Chen, Y et al. (2014) Estimation of salt intake by 24-h urinary sodium excretion: a cross-sectional study in Yantai, China BMC Public Health 14, 136.
21. Katagiri, R, Yuan, X, Kobayashi, S et al. (2017) Effect of excess iodine intake on thyroid diseases in different populations: a systematic review and meta-analyses including observational studies. PLoS One 12, e0173722.
22. Zimmermann, MB & Andersson, M (2012) Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev 70, 553570.
23. Gerasimov, G, van der Haar, F, Ugulava, T et al. (2017) Preliminary report on Georgia Iodine Nutrition Survey 2017. Abstract presented at Iodine Nutrition Problem in Armenia Conference, Yerevan, Armenia, 10 October 2017.
24. World Health Organization (2017) STEPwise approach to surveillance (STEPS). http://www.who.int/ncds/surveillance/steps/en (accessed January 2018).
25. World Health Organization ( 2017) Armenia STEPS Survey 2016–2017 Fact Sheet. http://www.who.int/ncds/surveillance/steps/Armenia_2016_STEPS_FS.pdf (accessed January 2018).
26. Powles, J, Fahimi, S, Micha, R et al. (2013) Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3, e003733
27. Wong, E, Sullivan, K, Perrine, C et al. (2011) Comparison of median urinary iodine concentration as an indicator of iodine status among pregnant women, school-age children, and nonpregnant women. Food Nutr Bull 32, 206212.
28. UNICEF (2018) Guidance on the Monitoring of Salt Iodization Programmes and Determination of Population Iodine Status. New York: UNICEF; available at http://www.unicef.org/nutrition/files/Monitoring-of-Salt-Iodization.pdf

Keywords

Constituent analysis of iodine intake in Armenia

  • Nicholas Hutchings (a1) (a2) (a3), Elena Aghajanova (a1) (a4), Sisak Baghdasaryan (a5), Mushegh Qefoyan (a1) (a6), Catherine Sullivan (a7), Xuemei He (a7), Frits van der Haar (a8) (a9), Lewis Braverman (a7) and John P Bilezikian (a3) (a10)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed