Skip to main content Accessibility help

The finite Hilbert transform in weighted spaces

  • Kari Astala (a1), Lassi Päivärinta (a2) and Eero Saksman (a1)


The mapping properties of the finite Hilbert-transform (respectively the Hilbert transform on the half axis) are studied. Invertibility, surjectivity, injectivity and bounded ness from below of the transform are characterised in general weighted spaces. The results are applied to the restriction of the operator with logarithmic kernel.



Hide All
1Carlemann, T.. Sur la résolution de certaines équations intégrates. Ark. Mat., Astro, och Fysik 16 (1992).
2Garcia-Cuerva, J. and Francia, J. Rubio de. Weighted Norm Inequalities and Related Topics (Amsterdam: North-Holland, 1985).
3Garnett, J. B.. Bounded Analytic Functions (San Diego: Academic Press, 1981).
4Gradshteyn, I. S. and Ryzhik, I. M.. Table of integrals, series, and products (New York: Academic Press, 1980).
5Hsiao, G. and MacCamy, R. C.. Solutions of boundary value problems by integral equations of the first kind. SIAM Review 15 (1973), 687704.
6Hunt, R. A., Muchenhoupt, B. and Wheeden, R. L.. Weighted norm inequalities for the conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973), 227–52.
7Koppelman, W. and Pincus, J. D.. Spectral representations for finite Hilbert transformations. Math. Z. 71 (1959), 399407.
8Okada, S. and Elliot, D.. The finite Hilbert transform in ℒ2. Math. Nachr. 153 (1991), 5768.
9Rooney, P. G.. On the spectrum of an internal operator. Glasgow Math. J. 28 (1986), 59.
10Tricomi, F. G.. On the finite Hilbert transform. Quart. J. Math. 2 (1951), 199211.
11Tricomi, F. G.. Integral Equations (New York: Interscience, 1957).

Related content

Powered by UNSILO

The finite Hilbert transform in weighted spaces

  • Kari Astala (a1), Lassi Päivärinta (a2) and Eero Saksman (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.