Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Validity of plasma phenyl-γ-valerolactones as novel biomarkers of dietary (poly)phenols: Preliminary analysis from the VALID project
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Validity of plasma phenyl-γ-valerolactones as novel biomarkers of dietary (poly)phenols: Preliminary analysis from the VALID project
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Validity of plasma phenyl-γ-valerolactones as novel biomarkers of dietary (poly)phenols: Preliminary analysis from the VALID project
        Available formats
        ×
Export citation

Diets rich in (poly)phenols are recognised as having potentially beneficial roles in health and the prevention of chronic diseases(1). However, linking (poly)phenols with health outcomes is problematic because of their transient appearance in plasma(2), which limits the development of robust biomarkers of dietary exposure. Measures of phenyl-γ-valerolactones, products of colonic bacterial metabolism of the (poly)phenols (epi)catechin and procyanidin, offer the advantage of being more stable in plasma(3), and may represent novel biomarkers of dietary intake of (epi)catechin and procyanidin-rich foods such as tea, cocoa, grapes, nuts, red wine and berries. The aim of this analysis was to develop and validate plasma phenyl-γ-valerolactones as biomarkers of (epi)catechin and procyanidin-rich diets in a subsample of older adults from the island of Ireland.

This preliminary investigation was conducted as part of the multi-centred VALID project (www.jpi-valid.com) on 346 participants who provided a blood sample and completed an interviewer led (poly)phenol focused food frequency questionnaire. Plasma phenyl-γ-valerolactones were quantified using UHPLC-ESI-MS(3) at the University of Parma, while Phenol-Explorer® was used to estimate dietary intakes of (epi)catechin and procyanidin at Ulster University.

Analysis showed that 3 of a total of 11 phenyl-γ-valerolactones metabolites investigated, namely 5-(3′,4′-dihydroxyphenyl)- γ-valerolactone-3′-O-sulfate (3′4’-DiOH-VL-3′-O-Sulph), 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone-3′-O-glucuronide (3′4’-DiOH-VL-3′-O-Gluc) and 5-(3′,5′-dihydroxyphenyl)-γ-valerolactone-3′-O-glucuronide (3′5’-DiOH-VL-3′-O-Gluc), were detectable in ≥52% of plasma samples and these were examined in relation to corresponding dietary (poly)phenol intake. Participants were classified into tertiles of low, medium and high (poly)phenol intake and the two most predominant phenyl-γ-valerolactones metabolites (3′4’-DiOH-VL-3′-O-Sulph and 3′4’-DiOH-VL-3′-O-Gluc, detected in 95% and 77% of samples, respectively) showed markedly higher concentrations in participants reporting the highest dietary (poly)phenol intakes (Table 1).

Table 1. Relationship of (poly)phenol intake with plasma phenyl-γ-valerolactones status of participants

Data presented as median (x̃, 25th and 75th percentiles). Values within a row with different superscript letters are significantly different (ANOVA, followed by Games-Howell post hoc test). 1Dietary (poly)phenol intake is the sum of (epi)catehin and procyanidins.

These preliminary results indicate that plasma phenyl-γ-valerolactones are potential biomarkers of (epi)catechin and procyanidin rich diets. Their use to monitor dietary (poly)phenols (and change in intake in response to intervention), and thus the potential protective effects of (poly)phenol rich diets on cognitive function in ageing, warrants further investigation.

This project was funded under the Joint Programming Initiative ‘A Healthy Diet for a Healthy Life’ - Biomarkers for Nutrition and Health programme by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/P028225/1).

1.Del Rio, D, Rodriguez-Mateos, A, Spencer, JP et al. (2013) Antioxid Redox Signal 18, 18181892.
2.Spencer, JP, El Mohsen, MM, Minihane, AM et al. (2008) Br J Nutr 99(1), 1222.
3.Brindani, N, Mena, P, Calani, L et al. (2017) Mol Nutr Food Res 61(9).