Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Susceptibility to atherosclerosis in the apoE*3 Leiden mouse is programmed by intrauterine exposure to maternal under- and overnutrition
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Susceptibility to atherosclerosis in the apoE*3 Leiden mouse is programmed by intrauterine exposure to maternal under- and overnutrition
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Susceptibility to atherosclerosis in the apoE*3 Leiden mouse is programmed by intrauterine exposure to maternal under- and overnutrition
        Available formats
        ×
Export citation

Epidemiological studies have strongly suggested that the intrauterine environment plays a critical role in determining risk of disease in adulthood(1). Many cohort studies indicate that lower weight at birth, followed by a rapid catch-up growth in childhood is associated with increased late onset of CVD and metabolic syndrome(2). The present study showed that feeding either a low-protein diet or a high-fat ‘Western’ diet during pregnancy programmes development of atherosclerosis in apoE*3 Leiden (Leiden) mice. Leiden mice carry a naturally-occurring mutation in the human apoE gene rendering them prone to developing atherosclerosis when fed an atherogenic diet rich in cholesterol(3). Offspring born to wild-type C57Bl/6J females mated with Leiden males exposed to a low-protein diet in utero developed more severe atherosclerotic lesions within the aortic arch (2.61-fold greater lesion area compared with similar offspring of females fed a control diet; P<0.001) when fed an atherogenic diet for 12 weeks from weaning. Fetal protein restriction also led to a greater extent of dyslipidaemia, with low-protein-exposed offspring having raised plasma cholesterol (34% higher; P<0.001) and plasma TAG (39% higher; P<0.001) compared with offspring exposed to a control diet in utero. Analysis of a targeted gene array suggested a role for the LDL receptor, which was found to be underexpressed in the livers of low-protein-exposed mice. Similar programmed repression of sterol regulatory element-binding protein-1c and LDL receptor-related protein-1 suggests disordered lipid metabolism underlies the fetal programming of atherosclerosis seen in this model. Offspring of Leiden females fed a high-fat ‘Western’ diet during pregnancy developed more severe atherosclerotic lesions within the aortic arch (1.41-fold greater lesion area; P<0.001) when fed an atherogenic diet for 14 weeks from weaning. These data are the first demonstration, in an animal model, that nutrition during gestation can programme CVD as opposed to simply cardiovascular risk. The development of atherosclerosis is therefore dependent on the interaction of genotype, prenatal diet and postnatal diet. This finding highlights the importance of gene–nutrient interactions at very early stages of life in the aetiology of disease.

1. Godfrey, KM & Barker, DJ (2001) Public Health Nutr 4, 611624.
2. Eriksson, J, Forsen, T, Tuomilehto, J, Osmond, C & Barker, DJ (2001) Int J Obes (Lond) 25, 735740.
3. Groot, PH, van Vlijmen, BJ, Benson, GM, Hofker, MH, Schiffelers, R, Vidgeon-Hart, M & Havekes, LM (1996) Arterioscler Thromb Vasc Biol 16, 926933.