Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T22:31:53.295Z Has data issue: false hasContentIssue false

A solution to the problem of predicting the response of an animal to its diet

Published online by Cambridge University Press:  11 October 2007

Ilias Kyriazakis
Affiliation:
Genetics and Behavioural Sciences Department, The Scottish Agricultural College, West Mains Road, Edinburgh, EH9 3JG
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Nutrition Society Medal Lecture
Copyright
Copyright © The Nutrition Society 1996

References

Agricultural Research Council 1981 The Nutrient Requirements of Pigs Slough: Commonwealth Agricultural Bureaux.Google Scholar
Batterham, E. S., Andersen, L. M., Baigent, D. R. & White, E. (1990). Utilization of ileal digestible amino acids by growing pigs: effect of dietary lysine concentration on efficiency of lysine retention. British Journal of Nutrition 64, 8194.CrossRefGoogle ScholarPubMed
Black, J. L. (1995). Modelling energy metabolism in the pig-critical evaluation of a simple reference model. In Modelling Growth in the Pig 87102 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Black, J. L., Campbell, R. G., Williams, I. H., James, K. J. & Davies, G. T. (1986). Simulation of energy and amino acid utilisation in the pig. Research and Development in Agriculture 3, 121145.Google Scholar
Bruce, J. M. & Clark, J. J. (1979). Models of heat production and critical temperature for growing pigs. Animal Production 28, 285290.Google Scholar
Campbell, R. G., Steele, N. C., Caperna, T. J., McMurty, J. P., Solomon, M. B. & Mitchell, A. D. (1989). Interrelationships between sex and exogenous growth hormone administration on performance, body composition and protein and fat accretion of growing pigs. Journal of Animal Science 67, 177186.CrossRefGoogle ScholarPubMed
Campbell, R. G. & Taverner, M. R. (1988). Genotype and sex effects on the relationship between energy intake and protein deposition in growing pigs. Journal of Animal Science 66, 676686.CrossRefGoogle ScholarPubMed
Campbell, R. G., Taverner, M. R. & Currie, D. M. (1983). The influence of feeding level from 20 to 45 kg liveweight on the performance and body composition of female and entire male pigs. Animal Production 36, 193199.Google Scholar
Campbell, R. G., Taverner, M. R. & Currie, D. M. (1985a). The influence of feeding level on the protein requirements of pigs between 20 and 45 kg liveweight. Animal Production 40, 489496.Google Scholar
Campbell, R. G., Taverner, M. R. & Currie, D. M. (1985b). Effects of sex and energy intake between 48 and 90 kg liveweight on protein deposition in growing pigs. Animal Production 40, 497503.Google Scholar
Curnow, R. N. (1973). A smooth population response curve based on an abrupt threshold and plateau model for individuals. Biometrics 29, 110.Google Scholar
de Greef, K. H. (1992). Prediction of production. Nutrition induced tissue partitioning in growing pigs. PhD Thesis. Wageningen Agricultural University, The Netherlands.Google Scholar
de Lange, C. F. M. (1995). Framework for a simplified model to demonstrate principles of nutrient partitioning for growth in the pig. In Modelling Growth in the Pig 7185 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Emmans, G. C. (1988). Genetic components of potential and actual growth. In Animal Breeding Opportunities British Society of Animal Production Occasional Publication no. 12, 153181Edinburgh: BSAP.Google Scholar
Emmans, G. C. (1994). Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition 71, 801821.CrossRefGoogle ScholarPubMed
Emmans, G. C. & Fisher, C. (1986). Problems in nutritional theory. In Nutrient Requirement of Poultry and Nutrition Research Poultry Symposium no. 19, 939 Fisher, C. & Boorman, K. N. London: Butterworths.Google Scholar
Emmans, G. C. & Kyriazakis, I. (1995). A general method for predicting the weight of water in the empty bodies of pigs. Animal Science 61, 103108.CrossRefGoogle Scholar
Ferguson, N. S. & Gous, R. M. (1993). Evaluation of pig genotypes. 1. Theoretical aspects of measuring genetic parameters. Animal Production 56, 233243.Google Scholar
Ferguson, N. S., Gous, R. M. & Emmans, G. C. (1994). Preferred components for the construction of a new simulation model of growth, feed intake and nutrient requirements of growing pigs. South African Journal of Animal Science 24, 1017.Google Scholar
Fisher, C., Morris, T. R. & Jennings, R. C. (1973). A model for the description and prediction of the responses of laying hens to amino acid intake. British Poultry Science 14, 469484.CrossRefGoogle Scholar
Fuller, M. F., Franklin, M. F., McWilliam, R. & Pennie, K. (1995). The response of growing pigs, of different sex and genotype, to dietary energy and protein. Animal Science 60, 291298.CrossRefGoogle Scholar
Fuller, M. F. & Garthwaite, P. (1993). The form of response of body protein accretion to dietary amino acid supply. Journal of Nutrition 123, 957963.CrossRefGoogle ScholarPubMed
Knap, P. W. (1995). Aspects of stochasticity: variation between animals. In Modelling Growth in the Pig 165172 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Kotarbinska, M. 1969 Badania nad przemania energii u rosnacych swin (An investigation into the transformation of energy in growing pigs) Wraclaw: Institut Zootechniki, Wydewnictwa Wlasne nr. 238.Google Scholar
Kyriazakis, I., Dotas, D. & Emmans, G. G. (1994). The effect of breed on the relationship between food composition and the efficiency of protein utilization in pigs. British Journal of Nutrition 71, 849859.CrossRefGoogle ScholarPubMed
Kyriazakis, I. & Emmans, G. C. (1991). Diet selection in pigs: choices made by growing pigs following a period of underfeeding with protein. Animal Production 52, 337346.Google Scholar
Kyriazakis, I. & Emmans, G. C. (1992a). The growth of mammals following a period of nutritional limitation. Journal of Theoretical Biology 156, 485498.CrossRefGoogle ScholarPubMed
Kyriazakis, I. & Emmans, G. C. (1992b). The effects of varying protein and energy intakes on the growth and body composition of pigs. 1. The effects of energy intake at constant, high protein intake. British Journal of Nutrition 68, 603613.CrossRefGoogle ScholarPubMed
Kyriazakis, I. & Emmans, G. C. (1992c). The effects of varying protein and energy intakes on the growth and body composition of pigs. 2. The effects of varying both energy and protein intake. British Journal of Nutrition 68, 615625.CrossRefGoogle ScholarPubMed
Kyriazakis, I. & Emmans, G. C. (1995a). The voluntary food intake of pigs given foods based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of food bulk. British Journal of Nutrition 73, 191207.CrossRefGoogle Scholar
Kyriazakis, I. & Emmans, G. C. (1995b). Do breeds of pig differ in the efficiency with which they use a limiting protein supply?. British Journal of Nutrition 74, 183195.CrossRefGoogle ScholarPubMed
Kyriazakis, I., Emmans, G. C. & McDaniel, R. (1993). Whole body amino acid composition of the growing pig. Journal of the Science of Food and Agriculture 62, 2933.CrossRefGoogle Scholar
Kyriazakis, I., Leus, K., Emmans, G. C., Haley, C. S. & Oldham, J. D. (1993). The effect of breed (Large White × Landrace vs purebred Meishan) on the diets selected by pigs given a choice between two foods that differ in their crude protein contents. Animal Production 56, 121128.Google Scholar
Kyriazakis, I. & Oldham, J. D. (1993). Diet selection in sheep: The ability of growing lambs to select a diet that meets their crude protein requirements. British Journal of Nutrition 69, 617629.CrossRefGoogle Scholar
Moughan, P. J. (1989). Simulation of the daily partitioning of lysine in 50 kg pig-A factorial approach to estimating amino acid requirements for growth and maintenance. Research and Development in Agriculture 6, 714.Google Scholar
Moughan, P. J. (1995a). Modelling protein metabolism in the pig-first principles. In Modelling Growth in the Pig 5970 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Moughan, P. J. (1995b). Modelling protein metabolism in the pig-critical evaluation of a simple reference model. In Modelling Growth in the Pig 103112 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Moughan, P. J., Smith, W. C. & Pearson, G. (1987). Description and validation of a model simulating growth in the pig (20–90 kg liveweight). New Zealand Journal of Agricultural Research 30, 481489.CrossRefGoogle Scholar
Moughan, P. J., Smith, W. C. & Stevens, E. V. J. (1990). Description and validation of a model simulating growth in the pig (20–90 kg liveweight). New Zealand Journal of Agricultural Research 30, 481489.CrossRefGoogle Scholar
Noblet, J., Dubois, S., Herpin, P. & Sève, B. 1992 Influence de l'carutilisation de la somatotropine porcine sur l'carutilisation de l'carenergie et des protéines chez le porc. Conséquences sur les besoins nutritionels (Influence of the use of pig somatotrophin on the utilization of energy and protein in the pig. Consequences for nutritional needs). Journées de la Recherche Porcine en France 24, 237248.Google Scholar
Pomar, C., Harris, D. L. & Minvielle, F. (1991). Computer simulation model of swine production systems: I. Modelling the growth of young pigs. Journal of Animal Science 69, 14681488.CrossRefGoogle ScholarPubMed
Roan, S.-W. (1991). Bioeconomic models for the simulation of the production and management of the growing pigs and sows. PhD Thesis, University of Edinburgh.Google Scholar
Verstegen, M. W. A., de Greef, K. H. & Gerrits, W. J. J. (1995). Thermal requirements in pigs and modelling of the effects of coldness. In Modelling Growth in the Pig 123135 Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. Wageningen: Wageningen Pers.Google Scholar
Whittemore, C. T. (1983). Development of recommended energy and protein allowance for growing pigs. Agricultural Systems 11, 159186.CrossRefGoogle Scholar
Whittemore, C. T. (1994). Growth and the simulation of animal responses. In Principles of Pig Science 5573 Cole, D. J. A., Wiseman, J. & Varley, M. A. Nottingham: Nottingham University Press.Google Scholar
Whittemore, C. T. & Fawcett, R. H. (1976). Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Animal Production 22, 8796.Google Scholar
Whittemore, C. T., Tullis, J. B. & Emmans, G. C. (1988). Protein growth in pigs. Animal Production 46, 437445.CrossRefGoogle Scholar