Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T15:00:45.513Z Has data issue: false hasContentIssue false

Nitrogen metabolism in gastrointestinal tissue of the pig

Published online by Cambridge University Press:  28 February 2007

J. Van Der Meulen
Affiliation:
Institute for Animal Science and Health, Department of Nutrition of Pigs and Poultry (ID-DLO), PO Box 65, 8200 AB Lelystad, The Netherlands
A. J. M. Jansman
Affiliation:
TNO Nutrition and Food Research Institute, Department of Animal Nutrition and Physiology (ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Alpers, D. H. (1972). Protein synthesis in intestinal mucosa: the effect of route of administration of precursor amino acids. Journal of Clinical Investigation 51, 167173.CrossRefGoogle ScholarPubMed
Ardawi, M. S. M. & Newsholme, E. A. (1985). Fuel utilization in colonocytes of the rat. Biochemical Journal 231, 713719.CrossRefGoogle ScholarPubMed
Blachier, F., Darcy-Vrillon, B., Sener, A., Duée, P.-H. & Malaisse, W. J. (1991 a). Arginine metabolism in rat enterocytes. Biochimica et Biophysica Acta 1092, 304310.CrossRefGoogle ScholarPubMed
Blachier, F., M'Rabet-Touil, H., Darcy-Vrillon, B., Posho, L., & Duée, P.-H. (1991 b). Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum. Biochemical and Biophysical Research Communications 177, 11711177CrossRefGoogle ScholarPubMed
Blachier, F., M'Rabet-Touil, H., Posho, L., Darcy-Vrillon, B. & Duée, P.-H. (1993). Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. European Journal of Biochemistry 216, 109117.CrossRefGoogle Scholar
Blachier, F., M'Rabet-Touil, H., Posho, L., Morel, M.-T., Bernard, F., Darcy-Vrillon, B. & Duée, P.-H. (1992). Polyamine metabolism in enterocytes isolated from newborn pigs. Biochimica et Biophysica Acta 1175, 2126.CrossRefGoogle ScholarPubMed
Bronk, J. R. & Parsons, D. S. (1966). Amino acid accumulation and incorporation in rat intestine in vitro. Journal of Physiology 184, 950963.CrossRefGoogle ScholarPubMed
Butts, C. A., Moughan, P. J., Smith, W. C. & Carr, D. H. (1993). Endogenous lysine and other amino acid flows at the terminal ileum of the growing pig (20 kg BW): the effect of protein free, synthetic amino acid, peptide and protein alimentation. Journal of the Science of Food and Agriculture 61, 3140.CrossRefGoogle Scholar
Daniel, H., Boll, M. & Wenzel, U. (1994). Physiological importance and characteristics of peptide transport in intestinal epithelial cells. In Proceedings Vlth International Symposium on Digestive Physiology in Pigs, pp. 17 [Souffrant, W. B. and Hagemeister, H., editors] Dummersdorf: FBN.Google Scholar
Darcy-Vrillon, B., Morel, M.-T., Cherbuy, C., Bernard, F., Posho, L., Blachier, F., Meslin, J.-C. & Duée, P.-H. (1993). Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet. Journal of Nutrition 123, 234243.Google ScholarPubMed
den Hartog, L. A., Huisman, J., Thielen, W. J. G., van Schayk, G. H. A., Boer, H. & van Weerden, E. J. (1988). The effect of including various structural polysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals. Livestock Production Science 18, 157170.CrossRefGoogle Scholar
Deutz, N. E. P., ten Have, G. A. M., Soeters, P. B. & Moughan, P. J. (1995). Increased intestinal amino-acid retention from the addition of carbohydrates to a meal. Clinical Nutrition 14, 354364.CrossRefGoogle ScholarPubMed
Duée, P.-H., Darcy-Vrillon, B., Blachier, F. & Morel, M.-T. (1995). Fuel selection in intestinal cells. Proceedings of the Nutrition Society 54, 8394.CrossRefGoogle ScholarPubMed
Galibois, I., Pitre, F., Parent, G. & Savoie, L. (1991). Analysis of bound amino acids in the plasma of fed rats: a new preparation procedure. Journal of Nutritional Biochemistry 2, 2530.CrossRefGoogle Scholar
Giusi-Perier, A., Fiszlewicz, M. & Rérat, A. (1989). Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in unanesthetized pigs. Journal of Animal Science 67, 386402.CrossRefGoogle ScholarPubMed
Hirschfield, J. S. & Kern, F. (1969). Protein starvation and the small intestine. III. Incorporation of orally and intraperitoneally administered L-leucine 4,5-3H into intestinal mucosal proteins of protein-deprived rats. Journal of Clinical Investigation 48, 12241229.CrossRefGoogle Scholar
Jansman, A. J. M., Schulze, H., van Leeuwen, P. & Verstegen, M. W. A. (1994). Effects of protease inhibitors and lectins from soya on the true digestibility and the endogenous excretion of crude protein in piglets. In Proceedings VIth International Symposium on Digestive Physiology in Pigs, pp. 322324 [Souffrant, W. B. and Hagemeister, H., editors]. Dummersdorf: FBN.Google Scholar
Johnson, L. R. (1988). Regulation of gastrointestinal mucosal growth. Physiological Reviews 68, 456502.CrossRefGoogle ScholarPubMed
Kight, C. E. & Fleming, S. E. (1995). Transamination processes promote incomplete glutamine oxidation in small intestine epithelial cells. Journal of Nutritional Biochemistry 6, 2737.CrossRefGoogle Scholar
Krawielitzki, K., Zebrowska, T., Schadereit, R., Kowalczyk, J., Wünsche, J. & Herrmann, U. (1990). Determining of nitrogen absorption and nitrogen secretion in different sections of the pig's intestine by digesta exchange between 15N labelled and unlabelled animals. Archives of Animal Nutrition 40, 2537.Google ScholarPubMed
Lenis, N. P., Bikker, P., van der Meulen, J., van Diepen, J. Th. M., Bakker, J. G. M. & Jongbloed, A. W. (1996). Effect of dietary neutral detergent fiber on the ileal digestibility and portal flux of nitrogen and amino acids and on nitrogen utilization in growing pigs. Journal of Animal Science 74, 26872699.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1993). Protein metabolism and turnover. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 313339 [Forbes, J. M. and France, J., editors]. Slough: CAB International.Google Scholar
Low, A. G. & Zebrowska, T. (1989). Digestion in pigs. In Protein Metabolism in Farm Animals, pp. 53121 [Bock, H.- D., Eggum, B. O., Low, A. G., Simon, O. and Zebrowska, T., editors]. Berlin and Oxford: VEB Deutscher Landwirtschaftsverlag and Oxford University Press.Google Scholar
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
Mailliard, M. E., Stevens, B. R. & Mann, G. E. (1995). Amino acid transport by small intestinal, hepatic, and pancreatic epithelia. Gastroenterology 108, 888910.CrossRefGoogle ScholarPubMed
Malmlöf, K. (1987). Porto-arterial plasma concentration difference of urea and ammonia-nitrogen in growing pigs given high-fibre and low-fibre diets. British Journal of Nutrition 57, 439446.CrossRefGoogle Scholar
Malmlöf, K. & Simoes Nunes, C. (1992). The effect of intravenous urea infusions on portal and arterial plasma ammonia and urea enrichment of jejunal and colonic infusions. Scandinavian Journal of Gastroenterology 27, 620624.CrossRefGoogle ScholarPubMed
Malmlöf, K., Simoes Nunes, C. & Askbrant, S. (1989). Effects of guar gum on plasma urea, insulin and glucose in the growing pig. British Journal of Nutrition 61, 6773.CrossRefGoogle ScholarPubMed
Moncada, S. & Higgs, E. A. (1993). The L-arginine-nitric oxide pathway. New England Journal of Medicine 329, 20022012.Google ScholarPubMed
Mosenthin, R., Sauer, W. C. & de Lange, C. F. M. (1992 a). Tracer studies of urea kinetics in growing pigs: 1. The effect of intravenous infusion of urea on urea recycling and the site of urea secretion into the gastrointestinal tract. Journal of Animal Science 70, 34583466.CrossRefGoogle Scholar
Mosenthin, R., Sauer, W. C., Henkel, H., Ahrens, F. & de Lange, C. F. M. (1992 b). Tracer studies of urea kinetics in growing pigs: 2. The effect of starch infusion at the distal ileum on urea recycling and bacterial nitrogen excretion. Journal of Animal Science 70, 34673472.CrossRefGoogle ScholarPubMed
M'Rabet-Touil, H., Blachier, F., Morel, M.-T., Darcy-Vrillon, B. & Duée, P.-H. (1993). Characterization and ontogenesis of nitric oxide synthase activity in pig enterocytes. FEBS Letters 331, 243247.CrossRefGoogle ScholarPubMed
Munck, L. K. & Munck, B. G. (1994). Amino acid transport in the small intestine. Physiological Research 43, 335345.Google ScholarPubMed
Posho, L., Darcy-Vrillon, B., Blachier, F. & Duée, P.-H. (1994). The contribution of glucose and glutamine to energy metabolism in newborn pig enterocytes. Journal of Nutritional Biochemistry 5, 284290.CrossRefGoogle Scholar
Prior, R. L. & Gross, K. L. (1995). Dietary arginine deficiency and gut ammonium infusion alter flux of urea cycle intermediates across the portal-drained viscera of pigs. Journal of Nutrition 125, 251263.Google ScholarPubMed
Reeds, P. J., Burrin, D. G., Davis, T. A. & Fiorotto, M. L. (1993). Postnatal growth of gut and muscle: competitors or collaborators. Proceedings of the Nutrition Society 52, 5767.CrossRefGoogle ScholarPubMed
Rémésy, C. & Demigné, C. (1990). Specific effects of fermentable carbohydrates on blood urea flux and ammonia absorption in the rat cecum. Journal of Nutrition 119, 560565.CrossRefGoogle Scholar
Rérat, A. (1988). Experimentelle Ergebnisse über physiologische Vorgänge der Verdauung und Absorption in Bezug zur Fütterung und dem Metabolismus der Aminosäuren (Experimental Results on Gut Physiology and Absorption as Related to Amino Acid Nutrition and Metabolism). Zürich: Tgungsbericht ETH.Google Scholar
Rérat, A. & Buraczewska, L. (1986). Postprandial quantitative kinetics of urea and ammonia nitrogen exchanges between the digestive tract and the portal blood in conscious pigs receiving a diet with and without ammonia. Archives of Animal Nutrition 36, 252269.Google ScholarPubMed
Rérat, A., Jung, J. & Kandé, J. (1988 a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition 60, 105120.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes Nunes, C., Mendy, F. & Roger, L. (1988 b). Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusion of milk enzymic hydrolysate or free amino acids. British Journal of Nutrition 60, 121136.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes Nunes, C., Mendy, F., Vaissade, P. & Vaugelade, P. (1992). Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig. British Journal of Nutrition 68, 111138.CrossRefGoogle ScholarPubMed
Rérat, A., Vaissade, P. & Vaugelade, P. (1991). Comparative digestion of maltitol and maltose in unanesthetized pigs. Journal of Nutrition 121, 737744.CrossRefGoogle ScholarPubMed
Rérat, A., Vaugelade, P. & Villiers, P. (1980). A new method for measuring the absorption of nutrients in the pig: critical examination. In Current Concepts of Digestion and Absorption in Pigs. NIRD/HRI Technical Bulletin no. 3, pp. 177216 [Low, A. G. and Partridge, I. G., editors]. Ayr: Hannah Research Institute.Google Scholar
Sauer, W. C., Mosenthin, R., Ahrens, F. & den Hartog, L. A. (1991). The effect of source of fiber on ileal and faecal amino acid digestibility and bacterial nitrogen excretion in growing pigs. Journal of Animal Science 69, 40704077.CrossRefGoogle ScholarPubMed
Schulze, H., van Leeuwen, P., Verstegen, M. W. A. & van den Berg, J. W. O. (1995). Dietary level and source of neutral detergent fiber and ileal endogenous nitrogen flow in pigs. Journal of Animal Science 73, 441448.CrossRefGoogle ScholarPubMed
Simoes Nunes, C., Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989). Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports International 40, 901907.Google Scholar
Simoes Nunes, C., Galibois, I., Rérat, A., Savoie, L. & Vaugelade, P. (1991). Hepatic and portal-drained viscera balances of amino acids, insulin, glucagon and gastrin in the pig after ingestion of casein or rapeseed proteins. Reproduction Nutrition Développement 31, 217231.CrossRefGoogle ScholarPubMed
Simon, O. (1989). Metabolism of proteins and amino acids. In Protein Metabolism in Farm Animals, pp. 273366 [Bock, H.-D., Eggum, B. O., Low, A. G., Simon, O. and Zebrowska, T., editors]. Berlin and Oxford: VEB Deutscher Landwirtschaftsverlag and Oxford University Press.Google Scholar
Souffrant, W. B., Rérat, A., Laplace, J. P., Darcy-Vrillon, B., Köhler, R., Corring, T. & Gebhardt, G. (1993). Exogenous and endogenous contributions to nitrogen fluxes in the digestive tract of pigs fed a casein diet. III. Recycling of endogenous nitrogen. Reproduction Nutrition Développement 33, 373382.CrossRefGoogle ScholarPubMed
van der Meulen, J., Bakker, J. G. M., Smits, B. & de Visser, H. (1996 a). Portal appearance of glucose and amino acids in the pig after feeding maize starch and native pea starch. Proceedings of the Nutrition Society 55, 60A.Google Scholar
van der Meulen, J., Bakker, J. G. M., Smits, B. & de Visser, H. (1997). Effect of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. British Journal of Nutrition 78 (In the Press).CrossRefGoogle ScholarPubMed
van der Meulen, J., Lenis, N. P., Bakker, J. G. M., van Diepen, J. Th. M. & de Visser, H. (1996 b). Portal, hepatic, and splanchnic fluxes of amino acids, ammonia, and urea in pigs after feeding a high and low protein diet. Journal of Animal Science 74, Suppl. 1, 197 Abstr.Google Scholar
van der Meulen, J., Lenis, N. P., de Visser, H., Meijer, G. A. L., Bakker, J. G. M. & van Diepen, J. Th. M. (1995). Portal flux of amino acids (AA) in growing pigs fed isonitrogenous diets with different essential (EAA) to non-essential amino acid (NEAA) ratios. In Protein Metabolism and Nutrition, Proceedings of the 7th International Symposium on Protein Metabolism and Nutrition, p. 421 [Nunes, A. F., Portugal, A. V., Costa, J. P. and Ribeiro, J. R., editors]. Vale de Santarém, Portugal: Estação Zootécnica Nacional.Google Scholar
van der Meulen, J., Lenis, N. P., Meijer, G. A. L., de Jonge, L. H., Breuer, M. & Bakker, J. G. M. (1996 c). Peptide bound and free amino acids in portal and arterial plasma of pigs. Journal of Animal Science 74, Suppl. 1, 197 Abstr.Google Scholar
van Leeuwen, P., Leuvenink, H. G. D., Haasbroek, W. M., Priem, G., Bosch, M. & van Kleef, D. J. (1995). A portal-vein-catheterization technique in pigs and sheep, and postprandial changes of p02, pC02, pH, urea, ammonia, and creatinine and proteins in portal and arterial blood measured in pigs. Journal of Animal Physiology and Animal Nutrition 73, 3846.CrossRefGoogle Scholar
Vaugelade, P., Posho, L., Darcy-Vrillon, B., Bernard, F., Morel, M. T. & Duée, P.-H. (1994). Intestinal oxygen uptake and glucose metabolism during nutrient absorption in the pig. Proceedings of the Society for Experimental Biology and Medicine 207, 309316.CrossRefGoogle ScholarPubMed
Vinardell, M. P. (1990). Mutual inhibition of sugars and amino acid intestinal absorption. Comparative Biochemistry and Physiology 95, 1721.CrossRefGoogle ScholarPubMed
Watford, M., Lund, P. & Krebs, H. A. (1979). Isolation and metabolic characteristics of rat and chicken enterocytes. Biochemical Journal 178, 589596.CrossRefGoogle ScholarPubMed
Webb, K. E., Matthews, J. C. & DiRienzo, D. B. (1992). Peptide absorption: a review of current concepts and future perspectives. Journal of Animal Science 70, 32483257.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from the blood. Archives of Biophysics and Biochemistry 171, 662672.CrossRefGoogle Scholar
Windmueller, H. G. & Spaeth, A. E. (1976). Metabolism of absorbed aspartate, asparagine and arginine by rat small intestine in vivo. Archives of Biophysics and Biochemistry 175, 670676.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Journal of Biological Chemistry 255, 107112.CrossRefGoogle ScholarPubMed
Wu, G. (1995). Urea synthesis in enterocytes of developing pigs. Biochemical Journal 312, 717723.CrossRefGoogle ScholarPubMed
Wu, G., Borbolla, A. G. & Knabe, D. A. (1994 a). The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. Journal of Nutrition 124, 24372444.CrossRefGoogle ScholarPubMed
Wu, G., Knabe, D. A. & Flynn, N. E. (1994 b). Synthesis of citrulline from glutamine in pig enterocytes. Biochemical Journal 299, 115121.CrossRefGoogle ScholarPubMed
Wu, G., Knabe, D. A., Yan, W. & Flynn, N. E. (1995). Glutamine and glucose metabolism in enterocytes of the neonatal pig. American Journal of Physiology 268, R334R342.Google ScholarPubMed
Yen, J. T. & Killefer, J. (1987). A method for chronically quantifying net absorption of nutrients and gut metabolites into hepatic portal vein in conscious swine. Journal of Animal Science 64, 923934.CrossRefGoogle ScholarPubMed
Younes, H., Demigné, C., Behr, S. & Rémésy, C. (1995 a). Resistant starch exerts a lowering effect on plasma urea by enhancing urea N transfer into the large intestine. Nutrition Research 15, 11991210.CrossRefGoogle Scholar
Younes, H., Garleb, K., Behr, S., Rémésy, C. & Demigné, C. (1995 b). Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. Journal of Nutrition 125, 10101016.Google ScholarPubMed