Skip to main content Accessibility help
×
Home

Neural and metabolic regulation of macronutrient intake and selection

  • Hans-Rudolf Berthoud (a1), Heike Münzberg (a1), Brenda K. Richards (a1) and Christopher D. Morrison (a1)

Abstract

There is considerable disagreement regarding what constitutes a healthy diet. Ever since the influential work of Cannon and Richter, it was debated whether the ‘wisdom of the body’ will automatically direct us to the foods we need for healthy lives or whether we must carefully learn to eat the right foods, particularly in an environment of plenty. Although it is clear that strong mechanisms have evolved to prevent consumption of foods that have previously made us sick, it is less clear whether reciprocal mechanisms exist that reinforce the consumption of healthy diets. Here, we review recent progress in providing behavioural evidence for the regulation of intake and selection of proteins, carbohydrates and fats. We examine new developments in sensory physiology enabling recognition of macronutrients both pre- and post-ingestively. Finally, we propose a general model for central neural processing of nutrient-specific appetites. We suggest that the same basic neural circuitry responsible for the homoeostatic regulation of total energy intake is also used to control consumption of specific macro- and micronutrients. Similar to salt appetite, specific appetites for other micro- and macronutrients may be encoded by unique molecular changes in the hypothalamus. Gratification of such specific appetites is then accomplished by engaging the brain motivational system to assign the highest reward prediction to exteroceptive cues previously associated with consuming the missing ingredient. A better understanding of these nutrient-specific neural processes could help design drugs and behavioural strategies that promote healthier eating.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Neural and metabolic regulation of macronutrient intake and selection
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Neural and metabolic regulation of macronutrient intake and selection
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Neural and metabolic regulation of macronutrient intake and selection
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Hans-Rudolf Berthoud, fax +1 225 763 0260, email berthohr@pbrc.edu

References

Hide All
1. Cannon, W (1939) The Wisdom of the Body. New York: Norton.
2. Richter, C (1942–1943) Total self-regulatory functions of animals and human beings. Harvey Lect Ser 38, 63103.
3. Livesey, G (1984) The energy equivalents of ATP and the energy values of food proteins and fats. Br J Nutr 51, 1528.
4. Veldhorst, MA, Westerterp-Plantenga, MS & Westerterp, KR (2009) Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 90, 519526.
5. Kalhan, SC & Kilic, I (1999) Carbohydrate as nutrient in the infant and child: range of acceptable intake. Eur J Clin Nutr 53, Suppl. 1, S94100.
6. Rozin, P (1969) Adaptive food sampling patterns in vitamin deficient rats. J Comp Physiol Psychol 69, 126132.
7. Fromentin, G, Gietzen, DW & Nicolaidis, S (1997) Aversion-preference patterns in amino acid- or protein-deficient rats: a comparison with previously reported responses to thiamin-deficient diets. Br J Nutr 77, 299314.
8. Tindell, AJ, Smith, KS, Berridge, KC et al. (2009) Dynamic computation of incentive salience: “wanting” what was never “liked”. J Neurosci 29, 1222012228.
9. Liedtke, WB, McKinley, MJ, Walker, LL et al. (2011) Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc Natl Acad Sci USA 108, 1250912514.
10. Berridge, KC, Flynn, FW, Schulkin, J et al. (1984) Sodium depletion enhances salt palatability in rats. Behav Neurosci 98, 652660.
11. Tindell, AJ, Smith, KS, Pecina, S et al. (2006) Ventral pallidum firing codes hedonic reward: when a bad taste turns good. J Neurophysiol 96, 23992409.
12. Galef, BGJ (2000) Is There a specific appetite for Protein? In Neural and Metabolic Control of Macronutrient Intake , pp. 1928 [Berthoud, HR and Seeley, RJ, editors]. Boca Raton, FL: CRC Press.
13. Friedman, M (2000) Too many choices? Acritical essay on macronutrient selection. In Neural and Metabolic Control of Macronutrient Intake , pp. 1128 [Berthoud HaS, RJ, editor]. Boca Raton, FL: CRC Press.
14. Simpson, SJ & Raubenheimer, D (2000) Geometric models of macronutrient selection. In Neural and Metabolic Control of Macronutrient Intake , pp. 2942 [Berthoud, HR and Seeley, RJ, editors]. Boca Raton, FL: CRC Press.
15. de Castro, JM (2000) Macronutrient selection in free-feeding humans: evidence for long-term regulation. In Neural and Metabolic Control of Macronutrient Intake , pp. 4359 [Berthoud, HR and Seeley, RJ, editors]. Boca Raton, FL: CRC Press.
16. Berthoud, HR & Seeley, RJ. (2000) Neural and Metabolic Control of Macronutrient Intake. Boca Raton, FL: CRC Press.
17. Westerterp-Plantenga, MS, Nieuwenhuizen, A, Tome, D et al. (2009) Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 29, 2141.
18. Potier, M, Darcel, N & Tome, D (2009) Protein, amino acids and the control of food intake. Curr Opin Clin Nutr Metab Care 12, 5458.
19. Sanahuja, JC & Harper, AE (1963) Effect of dietary amino acid pattern on plasma amino acid pattern and food intake. Am J Physiol 204, 686690.
20. Leung, PM, Rogers, QR & Harper, AE (1968) Effect of amino acid imbalance on dietary choice in the rat. J Nutr 95, 483492.
21. Harper, AE & Peters, JC (1989) Protein intake, brain amino acid and serotonin concentrations and protein self-selection. J Nutr 119, 677689.
22. Koehnle, TJ, Russell, MC & Gietzen, DW (2003) Rats rapidly reject diets deficient in essential amino acids. J Nutr 133, 23312335.
23. Gietzen, DW, Hao, S & Anthony, TG (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu Rev Nutr 27, 6378.
24. Hao, S, Sharp, JW, Ross-Inta, CM et al. (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307, 17761778.
25. Rudell, JB, Rechs, AJ, Kelman, TJ et al. (2011) The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J Neurosci 31, 15831590.
26. Musten, B, Peace, D & Anderson, GH (1974) Food intake regulation in the weanling rat: self-selection of protein and energy. J Nutr 104, 563572.
27. Cheng, K, Simpson, SJ & Raubenheimer, D (2008) A geometry of regulatory scaling. Am Nat 172, 681693.
28. Simpson, SJ & Raubenheimer, D (1997) Geometric analysis of macronutrient selection in the rat. Appetite 28, 201213.
29. Simpson, SJ & Raubenheimer, D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6, 133142.
30. Kyriazakis, I & Emmans, GC (1991) Diet selection in pigs: dietary choices made by growing pigs following a period of underfeeding with protein. Anim Prod 52, 337346.
31. Raubenheimer, D & Simpson, SJ (1997) Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev 10, 151179.
32. Sorensen, A, Mayntz, D, Raubenheimer, D et al. (2008) Protein-leverage in mice: the geometry of macronutrient balancing and consequences for fat deposition. Obesity (Silver Spring) 16, 566571.
33. Simpson, SJ, Batley, R & Raubenheimer, D (2003) Geometric analysis of macronutrient intake in humans: the power of protein? Appetite 41, 123140.
34. Gosby, AK, Conigrave, AD, Lau, NS et al. (2011) Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 6, e25929.
35. Brooks, RC, Simpson, SJ & Raubenheimer, D (2010) The price of protein: combining evolutionary and economic analysis to understand excessive energy consumption. Obes Rev 11, 887894.
36. Mayntz, D, Raubenheimer, D, Salomon, M et al. (2005) Nutrient-specific foraging in invertebrate predators. Science 307, 111113.
37. Bartness, TJ & Rowland, NE (1983) Diet selection and metabolic fuels in three models of diabetes mellitus. Physiol Behav 31, 539545.
38. Epstein, LH, Salvy, SJ, Carr, KA et al. (2010) Food reinforcement, delay discounting and obesity. Physiol Behav 100, 438445.
39. Bellush, LL & Rowland, NE (1986) Dietary self-selection in diabetic rats: an overview. Brain Res Bull 17, 653661.
40. Kanarek, RB & Ho, L (1984) Patterns of nutrient selection in rats with streptozotocin-induced diabetes. Physiol Behav 32, 639645.
41. Tepper, BJ & Kanarek, RB (1989) Selection of protein and fat by diabetic rats following separate dilution of the dietary sources. Physiol Behav 45, 4961.
42. Tordoff, MG, Tepper, BJ & Friedman, MI (1987) Food flavor preferences produced by drinking glucose and oil in normal and diabetic rats: evidence for conditioning based on fuel oxidation. Physiol Behav 41, 481487.
43. Singer, LK, York, DA & Bray, GA (1998) Macronutrient selection following 2-deoxy-d-glucose and mercaptoacetate administration in rats. Physiol Behav 65, 115121.
44. Ritter, S, Ritter, JB & Cromer, L (1999) 2-Deoxy-d-glucose and mercaptoacetate induce different patterns of macronutrient ingestion. Physiol Behav 66, 709715.
45. DiBattista, D (1991) Effects of time-restricted access to protein and to carbohydrate in adult mice and rats. Physiol Behav 49, 263269.
46. White, BD, He, B, Dean, RG et al. (1994) Low protein diets increase neuropeptide Y gene expression in the basomedial hypothalamus of rats. J Nutr 124, 11521160.
47. Dunlap, S, Heinrichs, SC (2009) Neuronal depletion of omega-3 fatty acids induces flax seed dietary self-selection in the rat. Brain Res 1250, 113119.
48. Gaillard, D, Laugerette, F, Darcel, N et al. (2008) The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22, 14581468.
49. Tracy, AL, Clegg, DJ, Johnson, JD et al. (2008) The melanocortin antagonist AgRP (83–132) increases appetitive responding for a fat, but not a carbohydrate, reinforcer. Pharmacol Biochem Behav 89, 263271.
50. Smith Richards, BK, Belton, BN, York, B et al. (2004) Mice bearing Acads mutation display altered postingestive but not 5-s orosensory response to dietary fat. Am J Physiol Regul Integr Comp Physiol 286, R311R319.
51. Toepel, U, Knebel, JF, Hudry, J et al. (2009) The brain tracks the energetic value in food images. Neuroimage 44, 967974.
52. Davidson, TL, Morell, JR & Benoit, SC (2000) Memory and macronutrient regulation. In Neural and Metabolic Control of Macronutrient Intake , pp. 203217 [Berthoud, HR and Seeley, RJ, editors]. Boca Raton, FL: CRC Press.
53. Benoit, SC, Davis, JF & Davidson, TL (2010) Learned and cognitive controls of food intake. Brain Res 1350, 7176.
54. Damak, S, Rong, M, Yasumatsu, K et al. (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850853.
55. Palmer, RK (2007) The pharmacology and signaling of bitter, sweet, and umami taste sensing. Mol Interv 7, 8798.
56. Delay, ER, Eddy, MC & Eschle, BK (2009) Behavioral studies of umami: tales told by mice and rats. Ann NY Acad Sci 1170, 4145.
57. Nelson, G, Chandrashekar, J, Hoon, MA et al. (2002) An amino-acid taste receptor. Nature 416, 199202.
58. Chaudhari, N, Pereira, E & Roper, SD (2009) Taste receptors for umami: the case for multiple receptors. Am J Clin Nutr 90, 738S742S.
59. Maruyama, Y, Pereira, E, Margolskee, RF et al. (2006) Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 26, 22272234.
60. Perez, C, Ackroff, K & Sclafani, A (1996) Carbohydrate- and protein-conditioned flavor preferences: effects of nutrient preloads. Physiol Behav 59, 467474.
61. Perez, C, Lucas, F & Sclafani, A (1995) Carbohydrate, fat, and protein condition similar flavor preferences in rats using an oral-delay procedure. Physiol Behav 57, 549554.
62. Sclafani, A (2001) Psychobiology of food preferences. Int J Obes Relat Metab Disord 25, Suppl. 5, S13S16.
63. Miller, MG & Teates, JF (1985) Acquisition of dietary self-selection in rats with normal and impaired oral sensation. Physiol Behav 34, 401408.
64. DiBattista, D & Mercier, S (1999) Role of learning in the selection of dietary protein in the golden hamster (Mesocricetus auratus). Behav Neurosci 113, 574586.
65. Zukerman, S, Touzani, K, Margolskee, RF et al. (2009) Role of olfaction in the conditioned sucrose preference of sweet-ageusic T1R3 knockout mice. Chem Senses 34, 685694.
66. Rhinehart-Doty, JA, Schumm, J, Smith, JC et al. (1994) A non-taste cue of sucrose in short-term taste tests in rats. Chem Senses 19, 425431.
67. Nelson, G, Hoon, MA, Chandrashekar, J et al. (2001) Mammalian sweet taste receptors. Cell 106, 381390.
68. Sclafani, A, Glass, DS, Margolskee, RF et al. (2010) Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. Am J Physiol Regul Integr Comp Physiol 299, R1643R1650.
69. Steinert, RE, Gerspach, AC, Gutmann, H et al. (2011) The functional involvement of gut-expressed sweet taste receptors in glucose-stimulated secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). Clin Nutr 30, 524532.
70. Kokrashvili, Z, Mosinger, B & Margolskee, RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90, 822S825S.
71. Laugerette, F, Gaillard, D, Passilly-Degrace, P et al. (2007) Do we taste fat? Biochimie 89, 265269.
72. Kinney, NE & Antill, RW (1996) Role of olfaction in the formation of preference for high-fat foods in mice. Physiol Behav 59, 475478.
73. Ramirez, I (1993) Role of olfaction in starch and oil preference. Am J Physiol 265, R1404R1409.
74. Gilbertson, TA, Fontenot, DT, Liu, L et al. (1997) Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am J Physiol 272, C1203C1210.
75. Liu, P, Shah, BP, Croasdell, S et al. (2011) Transient receptor potential channel type M5 is essential for fat taste. J Neurosci 31, 86348642.
76. Cartoni, C, Yasumatsu, K, Ohkuri, T et al. (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30, 83768382.
77. Laugerette, F, Passilly-Degrace, P, Patris, B et al. (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115, 31773184.
78. Sclafani, A, Ackroff, K & Abumrad, NA (2007) CD36 gene deletion reduces fat preference and intake but not post-oral fat conditioning in mice. Am J Physiol Regul Integr Comp Physiol 293, R1823R1832.
79. Matsumura, S, Saitou, K, Miyaki, T et al. (2008) Mercaptoacetate inhibition of fatty acid beta-oxidation attenuates the oral acceptance of fat in BALB/c mice. Am J Physiol Regul Integr Comp Physiol 295, R82R91.
80. Ackroff, K, Vigorito, M & Sclafani, A (1990) Fat appetite in rats: the response of infant and adult rats to nutritive and non-nutritive oil emulsions. Appetite 15, 171188.
81. Lucas, F, Ackroff, K & Sclafani, A (1989) Dietary fat-induced hyperphagia in rats as a function of fat type and physical form. Physiol Behav 45, 937946.
82. Ackroff, K, Lucas, F & Sclafani, A (2005) Flavor preference conditioning as a function of fat source. Physiol Behav 85, 448460.
83. Wu, T, Rayner, CK, Jones, K et al. (2010) Dietary effects on incretin hormone secretion. Vitam Horm 84, 81110.
84. Langhans, W, Leitner, C & Arnold, M (2011) Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol 300, R554R565.
85. Berthoud, HR & Morrison, C (2008) The brain, appetite, and obesity. Annu Rev Psychol 59, 5592.
86. Levin, BE, Magnan, C, Dunn-Meynell, A et al. (2011) Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152, 25522557.
87. Luquet, S, Perez, FA, Hnasko, TS et al. (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683685.
88. Krashes, MJ, Koda, S, Ye, C et al. (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121, 14241428.
89. Kelley, AE & Berridge, KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22, 33063311.
90. Berridge, KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20, 125.
91. Lucas, LR, Pompei, P & McEwen, BS (1999) Correlates of deoxycorticosterone-induced salt appetite behavior and basal ganglia neurochemistry. Ann NY Acad Sci 897, 423428.
92. Cai, XJ, Evans, ML, Lister, CA et al. (2001) Hypoglycemia activates orexin neurons and selectively increases hypothalamic orexin-B levels: responses inhibited by feeding and possibly mediated by the nucleus of the solitary tract. Diabetes 50, 105112.
93. Diano, S, Horvath, B, Urbanski, HF et al. (2003) Fasting activates the nonhuman primate hypocretin (orexin) system and its postsynaptic targets. Endocrinology 144, 37743778.
94. Harris, GC, Wimmer, M & Aston-Jones, G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437, 556559.
95. Cason, AM, Smith, RJ, Tahsili-Fahadan, P et al. (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 100, 419428.
96. Mellinkoff, SM, Frankland, M, Boyle, D et al. (1956) Relationship between serum amino acid concentration and fluctuations in appetite. J Appl Physiol 8, 535538.
97. Choi, YH, Chang, N, Fletcher, PJ et al. (2000) Dietary protein content affects the profiles of extracellular amino acids in the medial preoptic area of freely moving rats. Life Sci 66, 11051118.
98. Hawkins, RA, O'Kane, RL, Simpson, IA et al. (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136, 218S226S.
99. Maurin, AC, Jousse, C, Averous, J et al. (2005) The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1, 273277.
100. Russell, MC, Koehnle, TJ, Barrett, JA et al. (2003) The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr Neurosci 6, 247251.
101. Leung, PM & Rogers, QR (1971) Importance of prepyriform cortex in food-intake response of rats to amino acids. Am J Physiol 221, 929935.
102. Blouet, C, Jo, YH, Li, X et al. (2009) Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci 29, 83028311.
103. Cota, D, Proulx, K, Smith, KA et al. (2006) Hypothalamic mTOR signaling regulates food intake. Science 312, 927930.
104. Morrison, CD, Xi, X, White, CL et al. (2007) Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am J Physiol Endocrinol Metab 293, E165E171.
105. Ropelle, ER, Pauli, JR, Fernandes, MF et al. (2008) A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57, 594605.
106. Morrison, CD, White, CL, Wang, Z et al. (2007) Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age. Endocrinology 148, 433440.
107. Purpera, MN, Shen, L, Taghavi, M et al. (2012) Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus. J Endocrinol 212, 8594.
108. Newgard, CB, An, J, Bain, JR et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9, 311326.
109. Blevins, JE, Truong, BG & Gietzen, DW (2004) NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res 1019, 124133.
110. Elias, CF, Saper, CB, Maratos-Flier, E et al. (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402, 442459.
111. Berthoud, HR & Mogenson, GJ (1997) Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-d-glucose. Am J Physiol 233, R127R133.
112. Bady, I, Marty, N, Dallaporta, M et al. (2006) Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes 55, 988995.
113. Woods, SC, Lotter, EC, McKay, LD et al. (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282, 503505.
114. Chavez, M, Riedy, CA, Van Dijk, G et al. (1996) Central insulin and macronutrient intake in the rat. Am J Physiol 271, R727R731.
115. Lenoir, M, Serre, F, Cantin, L et al. (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2, e698.
116. Hajnal, A, Smith, GP & Norgren, R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Regul Integr Comp Physiol 286, R31R37.
117. Sclafani, A, Touzani, K & Bodnar, RJ (2011) Dopamine and learned food preferences. Physiol Behav 104, 6468.
118. Tempel, DL, Leibowitz, KJ & Leibowitz, SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9, 309314.
119. Clegg, DJ, Air, EL, Woods, SC et al. (2002) Eating elicited by orexin-a, but not melanin-concentrating hormone, is opioid mediated. Endocrinology 143, 29953000.
120. Wortley, KE, Chang, GQ, Davydova, Z et al. (2003) Peptides that regulate food intake: orexin gene expression is increased during states of hypertriglyceridemia. Am J Physiol Regul Integr Comp Physiol 284, R1454R1465.
121. Chang, GQ, Karatayev, O, Ahsan, R et al. (2007) Dietary fat stimulates endogenous enkephalin and dynorphin in the paraventricular nucleus: role of circulating triglycerides. Am J Physiol Endocrinol Metab 292, E561E570.
122. Obici, S, Feng, Z, Morgan, K et al. (2002) Central administration of oleic acid inhibits glucose production and food intake. Diabetes 51, 271275.

Keywords

Related content

Powered by UNSILO

Neural and metabolic regulation of macronutrient intake and selection

  • Hans-Rudolf Berthoud (a1), Heike Münzberg (a1), Brenda K. Richards (a1) and Christopher D. Morrison (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.