Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Microbiota diversity during neonatal colonization impacts gut physiology in a pig model
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Microbiota diversity during neonatal colonization impacts gut physiology in a pig model
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Microbiota diversity during neonatal colonization impacts gut physiology in a pig model
        Available formats
        ×
Export citation

Reduced gut microbiota diversity is suspected to be detrimental in a variety of diseases, including inflammatory bowel diseases( 1 ). Variation in microbiota composition during gut colonization is known to influence neonatal mortality and may be a risk factor for various non-infectious diseases such as allergy, metabolic disorders and obesity later in life( 2 ). How neonatal microbiota diversity can modulate gut barrier function and defense systems is poorly understood. Therefore, the aim of the present study was to test the hypothesis that a complex microbiota is more suitable neonatally than a simplified microbiota for homeostatic development of gut function.

This hypothesis was tested in a neonatal pig model (Lelystad ethics protocol No. 2011097). Piglets were delivered by Caesarean section and were kept in SPF facilities. They were then administered orally at day 2 and 3 a simple microbiota (SM, n = 6) alone or with a faecal bacterial suspension from an unrelated sow at day 4 (CM, n = 6). The three bacterial genera and strains of the SM mixture (‘Bristol mix’) were recently shown to reliably colonize the gut of germfree pigs( 3 ). The piglets were slaughtered at 16 days of age. Segments of proximal jejunum, distal ileum and proximal colon and plasma were collected. Gut samples were analysed for villus-crypt morphology, enzyme activities (intestinal alkaline phosphatase, IAP; dipeptidyl-peptidase IV; sucrase), inducible heat shock proteins, soluble protein and IAP in digesta. Four plasma markers of inflammation (C-reactive protein, haptoglobin, TNF-α and α-acid glycoprotein) were analysed. Treatment effects were analysed by T-test.

At day 16, body weights and diversity of intestinal microbiota did not differ between the groups. However, an aberrant composition was observed in the jejunum and ileum of SM pigs [lower abundance of several presumed beneficial microbial groups (lactobacilli, butyrogenic species) and increase in a number of potential pathogens]. Jejunal crypts were deeper (P < 0.05), ileal surface area tended to be larger (P = 0.080) and colon crypts tended to be narrower (P = 0.056) in CM pigs. Sucrase activity in the jejunal mucosa was lower in CM pigs (P < 0.05) (other enzymes in jejunal and ileal tissue unaffected). Soluble protein and IAP activity were lower in ileal (P < 0.05, both) and colonic (P < 0.05 and P < 0.01, respectively) digesta of CM pigs. Finally HSP70 relative concentration tended (P = 0.096) to be lower in jejunal tissue. HSP27 tended to be lower in the ileum (P = 0.064) but was higher in the colon (P < 0.05) of CM pigs. Systemic inflammation did not differ between treatments.

Neonatal microbiota complexity profoundly affected various aspects of gut tissue and digesta characteristics, according to distinct regional patterns in pigs. CM reduced jejunal maturity, tended to reduce bacterial-induced stress on the intestine but increased it on the colon( 4 ). Finally, gut luminal degradation potential was higher in CM pigs.

1. Berry, D & Reinisch, W (2013) Best Pract Res Clin Gastroenterol 27, 4758.
2. Matamoros, S, Gras-Leguen, C, Le Vacon, F et al. (2013) Trends Microbiol 21, 167173.
3. Laycock, G, Sait, L, Inman, C et al. (2012) Vet Immunol Immunopathol 149, 216224.
4. Arvans, DL, Vavricka, SR, Ren, H et al. (2005) Am J Physiol Gastrointest Liver Physiol 288, G696G704.