Skip to main content Accessibility help
×
Home

Environmental and genetic factors influence the vitamin D content of cows’ milk

  • R. R. Weir (a1), J. J. Strain (a1), M. Johnston (a2), C. Lowis (a2), A. M. Fearon (a3), S. Stewart (a3) and L. K. Pourshahidi (a1)...

Abstract

Vitamin D is obtained by cattle from the diet and from skin production via UVB exposure from sunlight. The vitamin D status of the cow impacts the vitamin D content of the milk produced, much like human breast milk, with seasonal variation in the vitamin D content of milk well documented. Factors such as changes in husbandry practices therefore have the potential to impact the vitamin D content of milk. For example, a shift to year-round housing from traditional practices of cattle being out to graze during the summer months and housed during the winter only, minimises exposure to the sun and has been shown to negatively influence the vitamin D content of the milk produced. Other practices such as changing dietary sources of vitamin D may also influence the vitamin D content of milk, and evidence exists to suggest genetic factors such as breed can cause variation in the concentrations of vitamin D in the milk produced. The present review aims to provide an overview of the current understanding of how genetic and environmental factors influence the vitamin D content of the milk produced by dairy cattle. A number of environmental and genetic factors have previously been identified as having influence on the nutritional content of the milk produced. The present review highlights a need for further research to fully elucidate how farmers could manipulate the factors identified to their advantage with respect to increasing the vitamin D content of milk and standardising it across the year.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Environmental and genetic factors influence the vitamin D content of cows’ milk
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Environmental and genetic factors influence the vitamin D content of cows’ milk
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Environmental and genetic factors influence the vitamin D content of cows’ milk
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr K. Pourshahidi, email k.pourshahidi@ulster.ac.uk

References

Hide All
1. Horst, RL, Goff, JP & Reinhardt, TA (1994) Symposium: calcium metabolism and utilization. Calcium and vitamin D metabolism in the dairy cow. J Dairy Sci 77, 19361951.
2. Hymøller, L, Jensen, SK, Lindqvist, H et al. (2009) Supplementing dairy steers and organically managed dairy cows with synthetic vitamin D3 is unnecessary at pasture during exposure to summer sunlight. J Dairy Res 76, 372378.
3. Goff, JP, Liesegang, A & Horst, RL (2014) Diet-induced pseudohypoparathyroidism: a hypocalcemia and milk fever risk factor. J Dairy Sci 97, 15201528.
4. Hymøller, L & Jensen, SK (2010) Stability in the rumen and effect on plasma status of single oral doses of vitamin D and vitamin E in high-yielding dairy cows. J Dairy Sci 93, 57485757.
5. Richardson, MD & Logendra, S (1997) Ergosterol as an indicator of endophyte biomass in grass seeds. J Agric Food Chem 45, 39033907.
6. Hymøller, L & Jensen, SK (2011) Vitamin D2 impairs utilization of vitamin D3 in high-yielding dairy cows in a cross-over supplementation regimen. J Dairy Sci 94, 34623466.
7. Light, RF, Wilson, LT & Frey, CN (1934) Vitamin D in the blood and milk of cows fed irradiated yeast. J Nutr 8, 105111.
8. Hollis, BW, Roos, BA, Draper, HH et al. (1981) Vitamin D and its metabolites in human and bovine milk. J Nutr 111, 12401248.
9. Jakobsen, J, Jensen, SK, Hymøller, L et al. (2015) Short communication: artificial ultraviolet B light exposure increases vitamin D levels in cow plasma and milk. J Dairy Sci 98, 17.
10. Food and Agriculture Organization (2013) Milk and Dairy Products in Human Nutrition. Rome: FAO.
11. Nutritional Diet and Nutrition Survey (2014) Results from Years 1,2,3 and 4 (combined) of the Rolling Programme (2008/2009–2011/2012). London: Public Health England.
12. Laaksi, IT, Ruohola, JS, Ylikomi, TJ et al. (2006) Vitamin D fortification as public health policy: significant improvement in vitamin D status in young Finnish men. Eur J Clin Nutr 60, 10351038.
13. Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D and Calcium (2011) Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academies Press (US).
14. Calvo, MS & Whiting, SJ (2013) Survey of current vitamin D food fortification practices in the United States and Canada. J Steroid Biochem Mol Biol 136, 211213.
15. Lamberg-Allardt, C, Brustad, M, Meyer, HE et al. (2013) Vitamin D – a systematic literature review for the 5th edition of the Nordic Nutrition Recommendations. Food Nutr Res 57, 131.
16. Luce, EM (1924) The influence of diet and sunlight upon the growth-promoting and anti-rachitic properties of the milk afforded by a cow. Biochem J 18, 716739.
17. Chick, H & Roscoe, MH (1926) Influence of diet and sunlight upon the amount of vitamin A and vitamin D in the milk afforded by a cow. Biochem J 20, 632649.
18. Thompson, SY (1968) Section D. nutritive value of milk and milk products. Fat soluble vitamins in milk and milk products. J Dairy Res 35, 149169.
19. Thompson, SY, Henry, KM & Kon, SK (1964) Factors affecting the concentration of vitamins in milk. I. Effect of breed, season and geographical location on fat-soluble vitamins. J Dairy Res 31, 125.
20. Scott, J, Bishop, DR, Zechalko, A et al. (1984) Nutrient content of liquid milk. 1. Vitamins A, D3, C and the B complex in pasteurised bulk liquid milk. J Dairy Res 51, 3750.
21. Kurmann, KA & Indyk, H (1994) The endogenous vitamin D content of bovine milk: influence of season. Food Chem 50, 7581.
22. Lindmark-Månsson, H, Fondén, R & Pettersson, HE (2003) Composition of Swedish dairy milk. Int Dairy J 13, 409425.
23. McCance, RA & Widdowson, E (2002) In McCance and Widdowson's The Composition of Foods, 6th ed. Cambridge: Royal Society of Chemistry.
24. McCance, RA & Widdowson, E (2014) In McCance and Widdowson's The Composition of Foods, 7th ed. Cambridge: Royal Society of Chemistry.
25. Hymøller, L, Mikkelsen, LK, Jensen, SK et al. (2008) Access to outside areas during March and April in Denmark has negligible effect on the vitamin D3 status of organic dairy cows. Acta Agric Scand A 58, 5154.
26. Bartlett, S, Cotton, AG, Henry, KM et al. (1938) 196. The influence of various fodder supplements on the production and the nutritive value of winter milk. J Dairy Res 9, 273309.
27. European Commission (2016) European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003. Appendix 4(II). Annex II: List of additives subject to the provisions of Art. 10 2 of Reg. (EC) No 1831/2003 for which no application for revaluation was submitted before the deadline of 8 November 2010. Released 18 April 2016. http://ec.europa.eu/food/safety/animal-feed/feed-additives/eu-register_en
28. European Commission (2015) European Union Register of Feed Additivities pursuant to Regulation (EC) No 1831/2003. Released 14 December 2015. http://ec.europa.eu/food/safety/animal-feed/feed-additives/eu-register_en
29. Rode, LM, McAllister, TA & Cheng, KJ (1990) Microbial degradation of vitamin A in rumen fluid from steers fed concentrate, hay or straw diets. Can J Anim Sci 70, 227233.
30. Bourne, N, Wathes, DC, McGowan, M et al. (2007) A comparison of the effects of parenteral and oral administration of supplementary vitamin E on plasma vitamin E concentrations in dairy cows at different stages of lactation. Livest Sci 106, 5764.
31. Horst, RL, Reinhardt, TA & Reddy, GS (2005) Vitamin D metabolism. Vitamin D 1, 1536.
32. Thompson, SY & Hidiroglou, M (1983) Effects of large oral and intravenous doses of vitamin D2 and D3 on the vitamin D in milk. J Dairy Sci 66, 16381643.
33. Olsen, WG, Jorgensen, NA, Bringe, AN et al. (1974) 25-Hydroxycholecalciferol (25-OH-D3). III. Effect of dosage on soft tissue integrity and vitamin D activity of tissue and milk from dairy cows. J Dairy Sci 57, 677682.
34. Weiss, WP, Azem, E, Steinberg, W et al. (2015) Effect of feeding 25-hydroxyvitamin D3 with a negative cation–anion difference diet on calcium and vitamin D status of periparturient cows and their calves. J Dairy Sci 98, 55885600.
35. McDermott, CM, Beitz, DC, Littledike, ET et al. (1985) Effects of dietary vitamin D3 on concentrations of vitamin D and its metabolites in blood plasma and milk of dairy cows. J Dairy Sci 68, 19591967.
36. Ramhola, HMM, Santos, J, Casal, S et al. (2012) Fat-soluble vitamin (A, D, E and β-carotene) contents from the Portuguese autochthonous cow breed – Minhota. J Dairy Sci 95, 54765484.
37. Department for Environment, Food and Rural Affairs (2008) The Cattle Book 2008: Descriptive statistics of cattle numbers in Great Britain). Released 1 June 2008. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69220/pb13572-cattlebook-2008-090804.pdf
38. Wallis, GC (1944) A breed comparison in the vitamin D content of milk with notes on a modified technique for the vitamin D assay of low-potency fats and oils. J Dairy Sci 27, 733742.
39. Bechtel, HE & Hoppert, CA (1936) A study of the seasonal variation of vitamin D in normal cow's milk. J Nutr 11, 537549.
40. Pires, P, Fernandes, É, Vilarinho, M et al. (2003) Comparison of milk from two different cow breeds Barrosã and Frísia. Electron J Environ Agric Food Chem 2, 514518.
41. Hymøller, L & Jensen, SK (2010) Vitamin D3 synthesis in the entire skin surface of dairy cows despite hair coverage. J Dairy Sci 93, 20252029.
42. Hymøller, L & Jensen, SK (2012) 25-Hydroxycholecalciferol status in plasma is linearly correlated to daily summer pasture time in cattle at 56°N. Br J Nutr 108, 666671.
43. Libon, F, Cavalier, E & Nikkels, AF (2013) Skin color is relevant to vitamin D synthesis. Dermatology 227, 250254.
44. Wilkens, MR, Cohrs, I, Lifschitz, AL et al. (2013) Is the metabolism of 25-hydrovitamin D3 age-dependent in dairy cows? J Steroid Biochem Mol Biol 136, 4446.
45. Okano, T, Yokoshima, K & Kobayashi, T (1984) High-performance liquid chromatographic determination of vitamin D3 in bovine colostrum, early and later milk. J Nutr Sci Vitaminol 30, 431439.
46. Kelsey, JA, Corl, BA, Collier, RJ et al. (2003) The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. J Dairy Sci 86, 2588–297.
47. Bainbridge, ML, Cersosimo, LM, Wright, ADG et al. (2016) Content and composition of branched-chain fatty acids in bovine milk are affected by lactation stage and breed of dairy cow. PLoS ONE 11, e0150386.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed