Skip to main content Accessibility help
×
Home

Early breast cancer: why does obesity affect prognosis?

  • A. Heetun (a1), R. I. Cutress (a1) and E. R. Copson (a1)

Abstract

High BMI is associated with an increased risk of breast cancer in post-menopausal women but poorer outcomes in all age groups. The underlying mechanism is likely to be multi-factorial. Patients with a high BMI may present later due to body habitus. Some studies have also indicated an increased incidence of biologically adverse features, including a higher frequency of oestrogen receptor (ER negative) tumours, in obese patients. Obese patients have a higher frequency of surgical complications, potentially delaying systemic therapies, and reports suggest that chemotherapy and endocrine therapy are less effective in patients with BMI ≥30 kg/m2.

High BMI is generally interpreted as excess adiposity and a World Cancer Research Fund report judged that the associations between BMI and incidence of breast cancer were due to body fatness. However, BMI cannot distinguish lean mass from fat mass, or characterise body fat distribution. Most chemotherapy drugs are dosed according to calculated body surface area (BSA). Patients with a similar BSA or BMI may have wide variations in their distribution of adipose tissue and skeletal muscle (body composition); however, few studies have looked at the effect of this on chemotherapy tolerance or effectiveness. Finally, adjuvant treatments for breast cancer can themselves result in body composition changes.

Research is required to fully understand the biological mechanisms by which obesity influences cancer behaviour and the impact of obesity on treatment effectiveness and tolerance so that specific management strategies can be developed to improve the prognosis of this patient group.

Copyright

Corresponding author

*Corresponding author: E. R. Copson, email E.Copson@soton.ac.uk

References

Hide All
1.Ferlay, J, Soerjomataram, I, Ervik, M et al. GLOBOCAN 2012 v1·0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr (link is external) (accessed December 2013).
3.Rizzolo, P, Silvestri, V, Falchetti, M et al. (2011) Inherited and acquired alterations in development of breast cancer. Appl Clin Genet 4, 145158.
4.International Agency for Research on Cancer (2017) List of Classifications by cancer sites with sufficient or limited evidence in humans, Volumes 1 to 120a http://monographs.iarc.fr/ENG/Classification/index.php (accessed October 2017).
5.World Cancer Research Fund/American Institute for Cancer Research Continuous Update Project Report. Diet, nutrition, physical activity and breast cancer (2017) http://www.wcrf.org/breast-cancer-2017 (accessed October 2017).
6.Chan, DS, Vieira, AR, Aune, D et al. (2014) Body mass index and survival in women with breast cancer – systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25, 19011914.
7.World Cancer Research Fund International/American Institute for Cancer Research (2014) Continuous Update Project Report: Diet, Nutrition, Physical Activity, and Breast Cancer Survivors. http://www.wcrf.org/sites/default/files/Breast-Cancer-Survivors-2014-Report.pdf (accessed December 2017).
8.Geneva WHO (1995) Physical status; the use and interpretation of anthropometry. Report of a WHO expert committee (Technical report series, No. 854).
9.The GBD 2015 Obesity Collaborators (2017) Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 377, 1327.
10.Organisation for Economic Co-operation and Development (2017) http://www.oecd.org/health/health-data.htm (accessed December 2017).
11.Wang, YC, McPherson, K, Marsh, T et al. (2011) Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815825.
12.Renehan, AG, Tyson, M, Egger, M et al. (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569578.
13.Lauby-Secretan, B, Scoccianti, C, Loomis, D et al. (2016) International agency for research on cancer handbook working group. Body fatness and cancer – viewpoint of the IARC working group. N Engl J Med 375, 794798.
14.Jeffreys, M, Smith, GD, Martin, RM et al. (2004) Childhood body mass index and later cancer risk: a 50-year follow-up of the Boyd Orr study. Int J Cancer 112, 348351.
15.Cheraghi, Z, Poorolajal, J, Hashem, T et al. (2012) Effect of body mass index on breast cancer during premenopausal and postmenopausal periods: a meta-analysis. PLoS ONE 7, e51446.
16.Munsell, MF, Sprague, BL, Berry, DA et al. (2014) Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev 36, 114136.
17.Huang, Z, Hankinson, SE, Colditz, GA et al. (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278, 14071411.
18.Morimoto, L, White, E, Chen, Z et al. (2002) Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control 13, 741751.
19.Chen, Y, Liu, L, Zhou, Q et al. (2017) Body mass index had different effects on premenopausal and postmenopausal breast cancer risks: a dose-response meta-analysis with 3,318,796 subjects from 31 cohort studies. BMC Public Health 17, 936.
20.Keum, N, Greenwood, DC, Lee, DH et al. (2015) Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst 24, 107.
21.Khandekar, MJ, Cohen, P & Spiegelman, BM (2011) Molecular mechanisms of cancer development in obesity. Nat Rev Cancer 11, 886895.
22.De Pergola, G & Silvestris, F (2013) Obesity as a major risk factor for cancer. J Obes 2013, 291546.
23.Gunter, MJ, Hoover, DR, Yu, H et al. (2009) Insulin, insulin-like growth factor-I, and risk of breast cancer in post-menopausal women. J Natl Cancer Inst 101, 4860.
24.Jardé, T, Perrier, S, Vasson, MP et al. (2011) Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer 47, 3343.
25.Snoussi, K, Strosberg, AD, Bouaouina, N et al. (2006) Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer 6, 38.
26.Catalano, S, Mauro, L, Marsico, S et al. (2004) Leptin induces, via ERK1/ERK2 signal, functional activation of estrogen receptor alpha in MCF-7 cells. J Biol Chem 279, 1990819915.
27.Ruan, H, Zarnowski, MJ, Cushman, SW et al. (2003) Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and down-regulates adipocyte genes. J Biol Chem 278, 4758547593.
28.Weisberg, SP, McCann, D, Desai, M et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 17961808.
29.Xu, H, Barnes, GT, Yang, Q et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 18211830.
30.Qian, BZ, Li, J, Zhang, H et al. (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222225.
31.Ueno, T, Toi, M, Saji, H et al. (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6, 32823289.
32.Campbell, MJ, Tonlaar, NY, Garwood, ER et al. (2011) Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 128, 703711
33.Calle, EE & Kaaks, R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4, 579591.
34.Ewertz, M, Jensen, MB, Gunnarsdottir, KA et al. (2011) Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol 29, 2531.
35.Protani, M, Coory, M & Martin, JH (2008) Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 111, 329342.
36.Copson, ER, Cutress, RI, Maishman, T et al. (2015) Obesity and the outcome of young breast cancer patients in the UK: the POSH study. Ann Oncol 26, 101112.
37.Majed, B, Moreau, T, Senouci, K et al. (2008) Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res Treat 111, 329342.
38.Niraula, S, Ocana, A, Ennis, M et al. (2012) Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: a meta-analysis. Breast Cancer Res Treat 134, 769781.
39.Pan, H & Gray, RG and Early Breast Cancer Trialists’ Collaborative Group (2014) Effect of obesity in premenopausal ER + early breast cancer: EBCTCG data on 80,000 patients in70 trials. J Clin Oncol 32, Suppl. abstr 503, 5s.
40.Sparano, JA, Wang, M, Zhao, F et al. (2012) Obesity at diagnosis is associated with inferior outcomes in hormone receptor-positive operable breast cancer. Cancer 118, 59375946.
41.Robertson, SA, Jeeveratnam, JA, Agrawal, A et al. (2017) Mastectomy skin flap necrosis: challenges and solutions. Breast Cancer (Dove Med Press) 13, 141152.
42.Robertson, AS, Rusby, JE & Cutress, RI (2014) Determinants of optimal mastectomy skin flap thickness. Br J Surg 101, 899911.
43.Garland, M, Hsu, FC, Clark, C et al. (2018). The impact of obesity on outcomes for patients undergoing mastectomy using the ACS-NSQIP data set. Breast Cancer Res Treat 168, 723726.
44.Chang, DW, Wang, B, Robb, GL et al. (2000) Effect of obesity on flap and donor-site complications in free transverse rectus abdominis myocutaneous flap breast reconstruction. Plast Reconstr Surg 105, 16401648.
45.Fischer, JP, Nelson, JA, Kovach, SJ et al. (2013) Impact of obesity on outcomes in breast reconstruction: analysis of 15,937 patients from the ACS-NSQIP datasets. J Am Coll Surg 217, 656664.
46.Werner, RS, McCormick, B, Petrek, J et al. (1991) Arm edema in conservatively managed breast cancer: obesity is a major predictive factor. Radiology 180, 177184.
47.STARSurg Collaborative (2016) Multicentre prospective cohort study of body mass index and postoperative complications following gastrointestinal surgery. Br J Surg 103, 11571172.
48.Rodriguez-Gil, JL, Takita, C, Wright, J et al. (2014) Inflammatory biomarker C-reactive protein and radiotherapy-induced early adverse skin reactions in breast cancer patients. Cancer Epidemiol Biomark Prev 23, 18731883.
49.Kubo, H (1995) Use of oblique simulation films for estimating the maximum dose to the bladder and rectum in obese brachytherapy patients. Med Phys 22, 441442.
50.Sweigart, KD (2002) A simple method of alignment for pelvic irradiation in obese patients. Med Dosim 27, 269270.
51.Mohiuddin, MM, Zhang, B, Tkaczuk, K et al. (2010) Upright, standing technique for breast radiation treatment in the morbidly obese patient. Breast J. 16, 448450.
52.Ergom, C, Kelly, T, Morrow, N et al. (2011) Prone whole-breast irradiation using three-dimensional conformal radiotherapy in women undergoing breast conservation for early disease yields high rates of excellent to good cosmetic outcomes in patients with large and/or pendulous breasts. Int J Radiat Oncol Biol Phys 83, 821828.
53.Kirby, AM, Evans, PM, Helyer, SJ et al. (2011) A randomised trial of supine versus prone breast radiotherapy (SuPr study): comparing set-up errors and respiratory motion. Radiother Oncol 100, 221226.
54.DuBois, D & DuBois, EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Int Med 17, 863871.
55.Bonadonna, G, Moliterni, A, Zambetti, M et al. (2005) 30 years’ follow up of randomised studies of adjuvant CMF in operable breast cancer: cohort study. BMJ 330, 21.
56.Lyman, GH, Dale, DC & Crawford, J (2003) Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J Clin Oncol 21, 45244531.
57.Griggs, JJ, Sorbero, ME & Lyman, GH (2005) Under-treatment of obese women receiving breast cancer chemotherapy. Arch Intern Med 165, 12671273.
58.Lyman, GH (2009) Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Canc Netw 7, 99108.
59.Field, KM, Kosmider, S, Jefford, M et al. (2008) Chemotherapy dosing strategies in the obese, elderly, and thin patient: results of a nationwide survey. J Oncol Pract 4, 108113.
60.Griggs, JJ & Sabel, MS (2008) Obesity and cancer treatment: weighing the evidence. J Clin Oncol 26, 40604062.
61.Griggs, JJ, Mangu, PB, Anderson, H et al. (2012) American society of clinical oncology. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 30, 15531561.
62.Hourdequin, KC, Schpero, WL, McKenna, DR et al. (2013) Toxic effect of chemotherapy dosing using actual body weight in obese versus normal-weight patients: a systematic review and meta-analysis. Ann Oncol 24, 29522962.
63.Furlanetto, J, Eiermann, W, Marme, F et al. (2016) Higher rate of severe toxicities in obese patients receiving dose-dense (dd) chemotherapy according to unadjusted body surface area – results of the prospectively randomized GAIN study. Ann Oncol 27, 20532059.
64.Wildiers, H & Reiser, M (2011) Relative dose intensity of chemotherapy and its impact on outcomes in patients with early breast cancer or aggressive lymphoma. Crit Rev Oncol Hematol 77, 221240.
65.Budman, DR, Berry, DA, Cirrincione, CT et al. (1998) Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. J Natl Cancer Inst 90, 12051211.
66.Hunter, RJ, Navo, MA, Thaker, PH et al. (2009) Dosing chemotherapy in obese patients: actual versus assigned body surface area (BSA). Cancer Treat Rev 35, 6978.
67.Litton, JK, Gonzalez-Angulo, AM, Warneke, CL et al. (2008) Relationship between obesity and pathologic response to neoadjuvant chemotherapy among woman with operable breast cancer. J Clin Oncol 26, 40724077.
68.Karatas, F, Erdem, GU, Sahin, S et al. (2017) Obesity is an independent prognostic factor of decreased pathological complete response to neoadjuvant chemotherapy in breast cancer patients. Breast 32, 237244.
69.Fontanella, C, Lederer, B & Gade, S (2015) Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res Treat 150, 127139.
70.Farr, A, Stolz, M, Baumann, L et al. (2017) The effect of obesity on pathological complete response and survival in breast cancer patients receiving uncapped doses of neoadjuvant anthracycline-taxane-based chemotherapy. Breast 33, 153158.
71.National Institute of Clinical Excellence (2013) Evidence summary ESNM13. Early and metastatic HER2-positive breast cancer: subcutaneous trastuzumab. https://www.nice.org.uk/advice/esnm13/chapter (accessed February 2018).
72.Jawa, Z, Perez, RM, Garlie, L et al. (2016) Risk factors of trastuzumab induced cardiotoxicity in breast cancer. A meta-analysis. Medicine (Baltimore) 95, e5195.
73.Pfeiler, G, Konigsberg, R, Fesl, C et al. (2011) Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol 29, 26532659.
74.Goodwin, PJ (2013) Obesity and endocrine therapy: host factors and breast cancer outcome. Breast 22, Suppl. 2, S44S47.
75.Jiralerspong, S & Goodwin, PJ (2016) Obesity and breast cancer prognosis – evidence, challenges, and opportunities. JCO Obesity and cancer Special Issue.
76.Weiden, PJ, Mackell, JA & McDonnell, DD (2004) Obesity as a risk factor for antipsychotic noncompliance. Schizophr Res 66, 5157.
77.Makari-Judson, G, Judson, CH & Mertens, WC (2007) Longitudinal patterns of weight gain after breast cancer diagnosis: observations beyond the first year. Breast J 13, 258265.
78.Lankester, KJ, Phillips, JE & Lawton, PA (2002) Weight gain during adjuvant and neoadjuvant chemotherapy for breast cancer: an audit of 100 women receiving FEC or CMF chemotherapy. Clin Oncol (R Coll Radiol) 14, 6467.
79.Gu, K, Chen, X, Zheng, Y et al. (2010) Weight change patterns among breast cancer survivors: results from the Shanghai breast cancer survival study. Cancer Causes Control 21, 621629.
80.Chaudhary, LN, Wen, S, Xiao, J et al. (2014) Weight change associated with third-generation adjuvant chemotherapy in breast cancer patients. J Commun Support Oncol 12, 355360.
81.Han, HS, Lee, KW, Kim, JH et al. (2009) Weight changes after adjuvant treatment in Korean women with early breast cancer. Breast Cancer Res Treat 114, 147153.
82.Reddy, SM, Sadim, M, Li, J et al. (2013) Clinical and genetic predictors of weight gain in patients diagnosed with breast cancer. Br J Cancer 109, 872881.
83.Freedman, RJ, Aziz, N, Albanes, D et al. (2004) Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab 89, 22482253.
84.Vagenas, D, DiSipio, T, Battistutta, D et al. (2015) Weight and weight change following breast cancer: evidence from a prospective, population-based, breast cancer cohort study. BMC Cancer 15, 28.
85.Harvie, MN, Campbell, IT, Baildam, A et al. (2004) Energy balance in early breast cancer patients receiving adjuvant chemotherapy. Breast Cancer Res Treat 83, 201210.
86.Sedjo, RL, Byers, T, Ganz, PA et al. (2014) Weight gain prior to entry into a weight-loss intervention study among overweight and obese breast cancer survivors. J Cancer Surviv 8, 410418.
87.Goodwin, PJ, Ennis, M, Pritchard, KI et al. (1999) Adjuvant treatment and onset of menopause predict weight gain after breast cancer diagnosis. J Clin Oncol 17, 120129.
88.Renehan, AG, Harvie, M, Cutress, RI et al. (2016) How to manage the obese patient with cancer. J Clin Oncol 34, 42844294.
89.Playdon, MC, Bracken, MB, Sanft, TB et al. (2015) Weight gain after breast cancer diagnosis and all-cause mortality: systematic review and meta-analysis. J Natl Cancer Inst 107, djv275.
90.Nechuta, S, Chen, WY, Cai, H et al. (2016) A pooled analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor-positive breast cancer prognosis. Int J Cancer 138, 20882097.
91.Sparreboom, A, Wolff, AC, Mathijssen, RH et al. (2007) Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. J Clin Oncol 25, 47074713.
92.Prado, CM, Baracos, VE, McCargar, LJ et al. (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15, 29202926.
93.Prado, CM, Antoun, S, Sawyer, MB et al. (2011) Two faces of drug therapy in cancer: drug-related lean tissue loss and its adverse consequences to survival and toxicity. Curr Opin Clin Nutr Metab Care 14, 250254.
94.Morgan, DJ & Bray, KM (1994) Lean body mass as a predictor of drug dosage implications for drug therapy. Clin Pharmacokinet 26, 292307.
95.Del Fabbro, E, Parsons, H, Warneke, CL et al. (2012) The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist 17, 12401245.
96.Iwase, T, Sangai, T, Nagashima, T et al. (2016) Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med 5, 4148.
97.James, FR, Wootton, S, Jackson, A et al. (2015) Obesity in breast cancer – what is the risk factor? Eur J Cancer 51, 705720.
98.Beasley, JM, Kwan, ML, Chen, WY et al. (2012) Meeting the physical activity guidelines and survival after breast cancer: findings from the after breast cancer pooling project. Breast Cancer Res Treat 131, 637643.
99.Berclaz, G, Li, S, Price, KN et al. (2004) Body mass index as a prognostic feature in operable breast cancer: the international breast cancer study group experience. Ann Oncol 15, 875884.
100.Kroenke, CH, Chen, WY, Rosner, B et al. (2005) Weight, weight gain, and survival after breast cancer diagnosis. J Clin Oncol 23, 13701378.
101.Abrahamson, PE, Gammon, MD, Lund, MJ et al. (2006) General and abdominal obesity and survival among young women with breast cancer. Cancer Epidemiol Biomark Prev 15, 18711877.
102.Tao, MH, Shu, XO, Ruan, ZX et al. (2006) Association of overweight with breast cancer survival. Am J Epidemiol 163, 101107.
103.Caan, BJ, Kwan, ML, Hartzell, G et al. (2008) Pre-diagnosis body mass index, post-diagnosis weight change, and prognosis among women with early stage breast cancer. Cancer Causes Control 19, 13191328.
104.de Azambuja, E, McCaskill-Stevens, W, Francis, P et al. (2010) The effect of body mass index on overall and disease-free survival in node-positive breast cancer patients treated with docetaxel and doxorubicin-containing adjuvant chemotherapy: the experience of the BIG 02-98 trial. Breast Cancer Res Treat 119, 145153.
105.Emaus, A, Veierød, MB, Tretli, S et al. (2010) Metabolic profile, physical activity, and mortality in breast cancer patients. Breast Cancer Res Treat 121, 651660.
106.Keegan, TH, Milne, RL, Andrulis, IL et al. (2010) Past recreational physical activity, body size, and all-cause mortality following breast cancer diagnosis: results from the breast cancer family registry. Breast Cancer Res Treat 123, 531542.
107.Pajares, B, Pollán, M, Martín, M et al. (2013) Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis. Breast Cancer Res 15, R105.
108.Ladoire, S, Dalban, C, Roché, H et al. (2014) Effect of obesity on disease-free and overall survival in node-positive breast cancer patients in a large French population: a pooled analysis of two randomised trials. Eur J Cancer 50, 506516.
109.Chung, IY, Lee, JW, Lee, JS et al. (2017) Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer. PLoS ONE 12, e0170311.
110.Guo, Q, Burgess, S, Turman, C et al. (2017) Body mass index and breast cancer survival: a Mendelian randomization analysis. Int J Epidemiol 46, 18141822.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed