Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access
  • Cited by 1

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Changes in dominant gut microbial species and metabolites in children with Crohn's disease during exclusive enteral nutrition
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Changes in dominant gut microbial species and metabolites in children with Crohn's disease during exclusive enteral nutrition
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Changes in dominant gut microbial species and metabolites in children with Crohn's disease during exclusive enteral nutrition
        Available formats
        ×
Export citation

The gut microbiota is implicated in the pathogenesis of Crohn's Disease (CD)( 1 ). Exclusive enteral nutrition (EEN) is a successful treatment but its mode of action remains unknown( 2 ). We assessed changes in the fecal microbiota milieu during EEN.

Five faecal samples were collected from CD children; 4 during EEN (start, 15, 30, end EEN∼60 days) and a fifth on free habitual diet. Two samples were collected from healthy controls. Faecal pH, bacterial metabolites (Figure) and quantitative changes (q-PCR) of total and 7 major bacterial groups implicated in CD were measured.

68 samples were from 15 CD children and 40 from 21 controls. Faecal pH and total sulphide increased and butyric acid decreased during EEN (Figure). F. prausnitzii spp. concentration significantly decreased after 30 d on EEN (Figure). In patients who responded to EEN, the magnitude of the observed changes was greater and the concentration of Bacteroides/Prevotella group also decreased. All these changes reverted to pre-treatment levels when the children returned to their free habitual diet.

Fig. 1. Fecal pH, and concentrations (g/dry feces) of total sulphide, butyrate and F. prausnitzii spp. before, during and after EEN completion (free habitual diet)

EEN impacts on gut microbiota composition and changes faecal metabolic activity. It is difficult to infer a causative association between such changes and disease improvement but the results do challenge the current perception of a protective role for F. prausnitzii in CD.

KG was funded by the Greek State Scholarship Foundation, the Hellenic Foundation of Gastroenterology & Nutrition, the Barr Endowment Fund and the Yorkhill Children Charity.

1. Sartor, RB (2008) Gastroenterology 134, 577–94.
2. Gerasimidis, K et al. (2011) J Clin Gastroenterol 45, 234–9.