Skip to main content Accessibility help
×
Home

Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence

  • Mary S. Fewtrell (a1), Caroline J. Edmonds (a2), Elizabeth Isaacs (a1), Nick J. Bishop (a3) and Alan Lucas (a1)...

Abstract

Aluminium is the most common metallic element, but has no known biological role. It accumulates in the body when protective gastrointestinal mechanisms are bypassed, renal function is impaired, or exposure is high – all of which apply frequently to preterm infants. Recognised clinical manifestations of aluminium toxicity include dementia, anaemia and bone disease. Parenteral nutrition (PN) solutions are liable to contamination with aluminium, particularly from acidic solutions in glass vials, notably calcium gluconate. When fed parenterally, infants retain >75% of the aluminium, with high serum, urine and tissue levels. Later health effects of neonatal intravenous aluminium exposure were investigated in a randomised trial comparing standard PN solutions with solutions specially sourced for low aluminium content. Preterm infants exposed for >10 d to standard solutions had impaired neurologic development at 18 months. At 13–15 years, subjects randomised to standard PN had lower lumbar spine bone mass; and, in non-randomised analyses, those with neonatal aluminium intake above the median had lower hip bone mass. Given the sizeable number of infants undergoing intensive care and still exposed to aluminium via PN, these findings have contemporary relevance. Until recently, little progress had been made on reducing aluminium exposure, and meeting Food and Drug Administration recommendations (<5 μg/kg per d) has been impossible in patients <50 kg using available products. Recent advice from the UK Medicines and Healthcare regulatory Authority that calcium gluconate in small volume glass containers should not be used for repeated treatment in children <18 years, including preparation of PN, is an important step towards addressing this problem.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Mary S. Fewtrell, fax +44 2078319903, email m.fewtrell@ich.ucl.ac.uk

References

Hide All
1.Bishop, NJ, Morley, R, Day, JP et al. (1997) Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. New Engl J Med 336, 15571561.
2.Burn, DJ & Bates, D (1998) Neurology and the kidney. J Neurol Neurosurg Psychiatry 65, 810821.
3.Cusamo, F & Savazzi, G (1986) Cerebral computed tomography in uremic hemodialyzed patients. J Comput Assist Tomogr 10, 567570.
4.McDermott, JR, Smith, AI, Ward, MK et al. (1978) Brain-aluminium concentration in dialysis encephalopathy. Lancet 1 (8070), 901904.
5.Bolla, KI, Briefel, G, Spector, D et al. (1992) Neurocognitive effects of aluminium. Arch Neurol 49, 10211026.
6.White, DM, Longstreth, WT, Rosenstock, L et al. (1992) Neurologic syndrome in 25 workers from an aluminium smelting plant. Arch Intern Med 152, 14431448.
7.Ott, SM, Maloney, NA, Klein, GL et al. (1983) Aluminum is associated with low bone formation in patients receiving chronic parenteral nutrition. Ann Int Med 98, 910914.
8.Ott, SM, Maloney, NA, Coburn, JW et al. (1982) The prevalence of bone aluminium deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med 307, 709713.
9.Goodman, WG, Gilligan, J & Horst, RL (1984) Short-term aluminium administration in the rat: effects on bone formation and relationship to renal osteomalacia. J Clin Invest 73, 171181.
10.Sedman, AB, Alfrey, AC, Miller, NL et al. (1987) Tissue and cellular basis for impaired bone formation in aluminium-related osteomalacia in the pig. J Clin Invest 79, 8692.
11.Goodman, WG, Henry, DA, Horst, R et al. (1984) Parenteral aluminium administration in the dog. II. Induction of osteomalacia and effect on vitamin D metabolism. Kidney Int 25, 370375.
12.Moreno, A, Dominguez, C & Ballabriga, A (1994) Aluminum in the neonate related to parenteral nutrition. Acta Paediatr 83, 2529.
13.Mouser, JF, Wu, AH & Herson, VC (1998) Aluminum contamination of neonatal parenteral nutrient solutions and additives. Am J Health Syst Pharm 55, 10711072.
14.McGraw, M, Bishop, N, Jameson, R et al. . (1986) Aluminum content of milk formulae and intravenous fluids used in infants. Lancet 1, 157.
15.Sedman, AB, Klein, GL, Merritt, RJ et al. (1985) Evidence of aluminium loading in infants receiving intravenous therapy. New Engl J Med 312, 13371343.
16.Bayley, N (1969) Bayley Scales of Infant Development. New York: Psychological Corporation.
17.Wechsler, D (1999) Wechsler Abbreviated Scale of Intelligence Manual. San Antonio, TX: Harcourt Brace & Company.
18.Wechsler, D (1993) Wechsler Objectives Reading Dimensions Test. Sidcup, UK: Psychological Corporation.
19.Wechsler, D (1996) Wechsler Objectives Numerical Dimensions Test. Sidcup, UK: Psychological Corporation.
20.Talley, H (1993) Children's Auditory Verbal Learning Test (CAVLT-2). Odessa, FL: Psychological Assessment Resources.
21.Cohen, M (1997) Children's Memory Scale (CMS). Sidcup, UK: Psychological Corporation.
22.Corsi, PM (1972) Human memory and the medial temporal region of the brain. Unpublished doctoral dissertation, McGill University, Montreal, Canada.
23.Emslie, H, Wilson, C, Burden, V et al. . (2003) Behavioural Assessment of the Dysexecutive Syndrome in Children (BADS-C). Suffolk, UK: Thames Valley Test Company.
24.Fewtrell, MS, Bishop, NJ, Edmonds, CJ et al. . (2009) Aluminum exposure from parenteral nutrition in preterm infants: bone health at 15-year follow-up. Pediatrics 124, 13721379.
25.Fewtrell, MS (2006) Osteoporosis; is primary prevention possible? In Primary prevention by Nutrition Intervention in Infancy and Childhood, pp. 135152 [Lucas, A and Sampson, HA]. Nestle Nutrition Workshop Series Pediatric Program 57. Karger, Switzerland.
26.Cirmanova, V, Beyer, M, Starka, L et al. . (2008) The effect of leptin on bone – an evolving concept of action. J Bone Min Res 57, S143S151.
27.Elefteriou, F (2008) Regulation of bone remodelling by the central and peripheral nervous system. Arch Biochem Biophys 473, 231236.
28.Hernandez, CJ (2003) Theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteopos Int 14, 843847.
29.Food and Drug Administration (2003) Amendment of regulations on parenteral nutrition; delay of effective date. Fed Register 68, 3297932981.
30.Poole, RL, Hintz, SR, Mackenzie, NI et al. . (2008) Aluminum exposure from pediatric parenteral nutrition: meeting the new FDA regulation. J Parenter Enteral Nutr 32, 242246.
31.Poole, RL, Schiff, L, Hintz, SR et al. . (2010) Aluminum content of parenteral nutrition in neonates: measured versus calculated levels. J Pediatr Gastro Nutr 50, 208211.
32.MHRA Public Assessment Report (2010) Calcium gluconate injection 10% in 10 ml glass containers: risk of aluminium exposure. http://www.mhra.gov.uk

Keywords

Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence

  • Mary S. Fewtrell (a1), Caroline J. Edmonds (a2), Elizabeth Isaacs (a1), Nick J. Bishop (a3) and Alan Lucas (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed