Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-9g8ph Total loading time: 0.629 Render date: 2022-06-28T19:59:26.934Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis

Published online by Cambridge University Press:  23 September 2021

Vaios Svolos
Affiliation:
Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
Konstantinos Gkikas
Affiliation:
Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
Konstantinos Gerasimidis*
Affiliation:
Human Nutrition, School of Medicine, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
*
*Corresponding author: Konstantinos Gerasimidis, email Konstantinos.gerasimidis@glasgow.ac.uk

Abstract

The aetiology of inflammatory bowel disease (IBD) is multifactorial, with diet and gut microbiota playing an important role. Nonetheless, there are very few studies, particularly clinical research, which have explored the interaction between diet and gut microbiota. In the current review, we summarise the evidence from clinical trials exploring the interactions between the gut microbiota and diet in the management of IBD. Data from the effect of exclusive enteral nutrition (EEN) on the gut microbiota of children with active Crohn's disease (CD), receiving induction treatment, offer opportunities to understand the role of gut microbiota in underlying disease pathogenesis and develop novel dietary and pharmacological microbial therapeutics. In contrast, the evidence which links the effectiveness of food-based dietary therapies for IBD with mechanisms involving the gut microbiota is far less convincing. The microbial signals arising from these dietary therapies are inconsistent and vary compared to the effects of effective treatment with EEN in CD.

Type
Conference on ‘Gut microbiome and health’
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributed the same.

References

Gerasimidis, K, Godny, L, Sigall-Boneh, R, et al. (2021) Current recommendations on the role of diet in the aetiology and management of IBD. Frontline Gastroenterol. doi: 10.1136/flgastro-2020-101429.Google Scholar
van Rheenen, PF, Aloi, M, Assa, A, et al. (2020) The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update. J Crohns Colitis.Google ScholarPubMed
MacLellan, A, Moore-Connors, J, Grant, S, et al. (2017) The impact of exclusive enteral nutrition (EEN) on the gut microbiome in Crohn's disease: A review. Nutrients 9, 447.CrossRefGoogle ScholarPubMed
Gatti, S, Galeazzi, T, Franceschini, E, et al. (2017) Effects of the exclusive enteral nutrition on the microbiota profile of patients with Crohn's disease: A systematic review. Nutrients 9, 832.CrossRefGoogle ScholarPubMed
Shah, R & Kellermayer, R (2014) Microbiome associations of therapeutic enteral nutrition. Nutrients 6, 52985311.CrossRefGoogle ScholarPubMed
Leach, ST, Mitchell, HM, Eng, WR, et al. (2008) Sustained modulation of intestinal bacteria by exclusive enteral nutrition used to treat children with Crohn's disease. Aliment Pharmacol Ther 28, 724733.CrossRefGoogle ScholarPubMed
Lionetti, P, Callegari, ML, Ferrari, S, et al. (2005) Enteral nutrition and microflora in pediatric Crohn's disease. J Parenter Enter Nutr 29, S173175, discussion S175–178, S184–178.CrossRefGoogle ScholarPubMed
D'Argenio, V, Precone, V, Casaburi, G, et al. (2013) An altered gut microbiome profile in a child affected by Crohn's disease normalized after nutritional therapy. Am J Gastroenterol 108, 851852.CrossRefGoogle Scholar
Gerasimidis, K, Bertz, M, Hanske, L, et al. (2014) Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis 20, 861871.CrossRefGoogle ScholarPubMed
Kaakoush, NO, Day, AS, Leach, ST, et al. (2015) Effect of exclusive enteral nutrition on the microbiota of children with newly diagnosed Crohn's disease. Clin Transl Gastroenterol 6, e71.CrossRefGoogle ScholarPubMed
Lewis, JD, Chen, EZ, Baldassano, RN, et al. (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn's disease. Cell Host Microbe 18, 489500.CrossRefGoogle ScholarPubMed
Quince, C, Ijaz, UZ, Loman, N, et al. (2015) Extensive modulation of the fecal metagenome in children with Crohn's disease during exclusive enteral nutrition. Am J Gastroenterol 110, 17181729, quiz 1730.CrossRefGoogle ScholarPubMed
Tjellstrom, B, Hogberg, L, Stenhammar, L, et al. (2012) Effect of exclusive enteral nutrition on gut microflora function in children with Crohn's disease. Scand J Gastroenterol 47, 14541459.CrossRefGoogle ScholarPubMed
Guinet-Charpentier, C, Lepage, P, Morali, A, et al. (2017) Effects of enteral polymeric diet on gut microbiota in children with Crohn's disease. Gut 66, 194195.CrossRefGoogle ScholarPubMed
Schwerd, T, Frivolt, K, Clavel, T, et al. (2016) Exclusive enteral nutrition in active pediatric Crohn disease: Effects on intestinal microbiota and immune regulation. J Allergy Clin Immunol 138, 592596.CrossRefGoogle ScholarPubMed
Ashton, JJ, Colquhoun, CM, Cleary, DW, et al. (2017) 16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed pediatric inflammatory bowel disease. Medicine (Baltimore) 96, e7347.CrossRefGoogle ScholarPubMed
Dunn, KA, Moore-Connors, J, MacIntyre, B, et al. (2016) The gut microbiome of pediatric Crohn's disease patients differs from healthy controls in genes that can influence the balance between a healthy and dysregulated immune response. Inflamm Bowel Dis 22, 26072618.CrossRefGoogle ScholarPubMed
Dunn, KA, Moore-Connors, J, MacIntyre, B, et al. (2016) Early changes in microbial community structure are associated with sustained remission after nutritional treatment of pediatric Crohn's disease. Inflamm Bowel Dis 22, 28532862.CrossRefGoogle ScholarPubMed
van der Hooft, JJJ, Wandy, J, Young, F, et al. (2017) Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal Chem 89, 75697577.CrossRefGoogle ScholarPubMed
Alghamdi, A, Gerasimidis, K, Blackburn, G, et al. (2018) Untargeted metabolomics of extracts from faecal samples demonstrates distinct differences between paediatric Crohn's disease patients and healthy controls but no significant changes resulting from exclusive enteral nutrition treatment. Metabolites 8, 82.CrossRefGoogle ScholarPubMed
de Meij, TGJ, de Groot, EFJ, Peeters, CFW, et al. (2018) Variability of core microbiota in newly diagnosed treatment-naïve paediatric inflammatory bowel disease patients. PLoS One 13, e0197649.CrossRefGoogle ScholarPubMed
Levine, A, Wine, E, Assa, A, et al. (2019) Crohn's disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440450, e448.CrossRefGoogle Scholar
Diederen, K, Li, JV, Donachie, GE, et al. (2020) Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn's disease. Sci Rep 10, 18879.CrossRefGoogle ScholarPubMed
Jones, CMA, Connors, J, Dunn, KA, et al. (2020) Bacterial taxa and functions are predictive of sustained remission following exclusive enteral nutrition in pediatric Crohn's disease. Inflamm Bowel Dis 26, 10261037.CrossRefGoogle ScholarPubMed
Pigneur, B, Lepage, P, Mondot, S, et al. (2019) Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy-A randomised prospective clinical trial in children with Crohn's disease. J Crohns Colitis 13, 846855.CrossRefGoogle ScholarPubMed
Jia, W, Whitehead, RN, Griffiths, L, et al. (2010) Is the abundance of Faecalibacterium prausnitzii relevant to Crohn's disease? FEMS Microbiol Lett 310, 138144.CrossRefGoogle ScholarPubMed
Shiga, H, Kajiura, T, Shinozaki, J, et al. (2012) Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis 44, 736742.CrossRefGoogle ScholarPubMed
Walton, C, Montoya, MP, Fowler, DP, et al. (2016) Enteral feeding reduces metabolic activity of the intestinal microbiome in Crohn's disease: an observational study. Eur J Clin Nutr 70, 10521056.CrossRefGoogle ScholarPubMed
He, Q, Gao, Y, Jie, Z, et al. (2017) Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. Gigascience 6, 111.CrossRefGoogle ScholarPubMed
Sokol, H, Pigneur, B, Watterlot, L, et al. (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105, 1673116736.CrossRefGoogle ScholarPubMed
Whelan, K, Judd, PA, Preedy, VR, et al. (2005) Fructooligosaccharides and fiber partially prevent the alterations in fecal microbiota and short-chain fatty acid concentrations caused by standard enteral formula in healthy humans. J Nutr 135, 18961902.CrossRefGoogle ScholarPubMed
Svolos, V, Hansen, R, Nichols, B, et al. (2019) Treatment of active Crohn's disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 13541367, e1356.CrossRefGoogle ScholarPubMed
Johnson, T, Macdonald, S, Hill, SM, et al. (2006) Treatment of active Crohn's disease in children using partial enteral nutrition with liquid formula: a randomised controlled trial. Gut 55, 356361.CrossRefGoogle ScholarPubMed
Ruemmele, FM, Veres, G, Kolho, KL, et al. (2014) Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J Crohns Colitis 8, 11791207.CrossRefGoogle ScholarPubMed
Paramsothy, S, Paramsothy, R, Rubin, DT, et al. (2017) Faecal microbiota transplantation for inflammatory bowel disease: A systematic review and meta-analysis. J Crohns Colitis 11, 11801199.CrossRefGoogle ScholarPubMed
Benjamin, JL, Hedin, CR, Koutsoumpas, A, et al. (2011) Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease. Gut 60, 923929.CrossRefGoogle ScholarPubMed
Chermesh, I, Tamir, A, Reshef, R, et al. (2007) Failure of Synbiotic 2000 to prevent postoperative recurrence of Crohn's disease. Dig Dis Sci 52, 385389.CrossRefGoogle ScholarPubMed
Ghouri, YA, Richards, DM, Rahimi, EF, et al. (2014) Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin Exp Gastroenterol 7, 473487.Google ScholarPubMed
Levine, A, Kori, M, Kierkus, J, et al. (2018) Azithromycin and metronidazole versus metronidazole-based therapy for the induction of remission in mild to moderate paediatric Crohn's disease: a randomised controlled trial. Gut.Google ScholarPubMed
Cuiv, PO, Begun, J, Keely, S, et al. (2016) Towards an integrated understanding of the therapeutic utility of exclusive enteral nutrition in the treatment of Crohn's disease. Food Funct 7, 17411751.CrossRefGoogle ScholarPubMed
Zhang, Z, Taylor, L, Shommu, N, et al. (2020) A diversified dietary pattern is associated with a balanced gut microbial composition of Faecalibacterium and Escherichia/Shigella in patients with Crohn's disease in remission. J Crohns Colitis 14, 15471557.CrossRefGoogle ScholarPubMed
Halmos, EP, Christophersen, CT, Bird, AR, et al. (2016) Consistent prebiotic effect on gut microbiota with altered FODMAP intake in patients with Crohn's disease: A randomised, controlled cross-over trial of well-defined diets. Clin Transl Gastroenterol 7, e164.CrossRefGoogle ScholarPubMed
Walters, SS, Quiros, A, Rolston, M, et al. (2014) Analysis of gut microbiome and diet modification in patients with Crohn's disease. SOJ Microbiol Infect Dis 2, 113.CrossRefGoogle ScholarPubMed
Suskind, DL, Lee, D, Kim, YM, et al. (2020) The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn's disease: A randomized diet controlled trial. Nutrients 12, 3749.CrossRefGoogle ScholarPubMed
Lewis, JD, Sandler, R, Brotherton, C, et al. (2021) A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn's disease. Gastroenterology 161, 837852.e9.CrossRefGoogle ScholarPubMed
Fritsch, J, Garces, L, Quintero, MA, et al. (2021) Low-fat, high-fiber diet reduces markers of inflammation and dysbiosis and improves quality of life in patients with ulcerative colitis. Clin Gastroenterol Hepatol 19, 11891199, e1130.CrossRefGoogle Scholar
Cox, SR, Lindsay, JO, Fromentin, S, et al. (2020) Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158, 176188, e177.CrossRefGoogle Scholar
Suskind, DL, Cohen, SA, Brittnacher, MJ, et al. (2018) Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease. J Clin Gastroenterol 52, 155163.CrossRefGoogle ScholarPubMed
Logan, M, Gkikas, K, Svolos, V, et al. (2020) Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn's disease-new insights into dietary disease triggers. Aliment Pharmacol Ther 51, 935947.CrossRefGoogle ScholarPubMed
Holscher, HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172184.CrossRefGoogle ScholarPubMed
Earley, H, Lennon, G, Balfe, Á, et al. (2019) The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis. Sci Rep 9, 15683.CrossRefGoogle ScholarPubMed
Sasson, AN, Ananthakrishnan, AN & Raman, M (2021) Diet in treatment of inflammatory bowel diseases. Clin Gastroenterol Hepatol 19, 425435, e423.CrossRefGoogle ScholarPubMed
Wu, GD, Chen, J, Hoffmann, C, et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105108.CrossRefGoogle ScholarPubMed
De Filippo, C, Cavalieri, D, Di Paola, M, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107, 1469114696.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *