Skip to main content Accessibility help
×
Home

Genome-wide marker-trait association analysis in a core set of Dolichos bean germplasm

  • P. V. Vaijayanthi (a1), S. Ramesh (a1), M. B. Gowda (a2), A. M. Rao (a1) and C. M. Keerthi (a1)...

Abstract

Association mapping (AM), an alternative method of quantitative trait loci (QTL) discovery, exploits historic linkage disequilibrium (LD) present in natural populations. AM is effective in self-pollinated crops such as Dolichos bean as LD extends over longer genomic distance driven-by low rate of recombination and thereby requiring fewer markers for exploring marker-traits associations. A core set of Dolichos bean germplasm consisting of 64 accessions was evaluated for nine quantitative traits (QTs) during 2014 and 2015 rainy seasons and genotyped using 234 simple sequence repeats (SSR) markers. Substantial diversity was observed among the core set accessions at loci controlling QTs and 95 of the 234 SSR markers were found polymorphic. The structure analysis and low magnitude of fixation indices suggested weak population structure, which in-turn indicated the low possibility of false discovery rates in the marker-QTs association. The marker allele's scores were regressed onto phenotypes at nine QTs following general linear model and mixed linear model for exploring marker-QTs associations. Significantly higher number of SSR markers was found associated with genomic regions controlling nine QTs. A few of the markers such as KT Dolichos (KTD) 200 for days to 50% flowering, KTD 273 for fresh pod yield per plant and KTD 130 for fresh pods per plant explained ≥10% of the trait variations. The study could also identify a few SSR markers such as KTD 273, KTD 271 and KTD 130 linked to multiple traits. These linked SSR markers are suggested for validation for their use in marker-assisted Dolichos bean improvement programmes.

Copyright

Corresponding author

*Corresponding author. E-mail: pvvaijayanthi@gmail.com

References

Hide All
Adebisi, AA and Bosch, CH (2004) Lablab purpureus (L.) sweet. In: Grubben, GJH and Denton, OA (eds) Plant Resources of Tropical Africa (PROTA), No. 2, Vegetables. Wageningen, The Netherlands: PROTA Foundation, pp. 343348.
Agrama, HA, Eizenga, GC and Yan, W (2007) Association mapping of yield and its components in rice cultivars. Molecular Breeding 19: 341356.
Allard, RW (1999) Principles of Plant Breeding, 2nd edn. New York, USA: John Wiley and Sons, INC, p. 81.
Basavarajappa, PS and Byregowda, M (2000) Genetic divergence among field bean (Lablab purpureus L. Sweet) cultivars of Southern Karnataka. Indian Journal of Plant Genetic Resources 3: 134137.
Blair, MW, Diaz, LM, Buendia, HF and Duque, MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics 119: 955972.
Borah, P and Shadeque, A (1992) Studies on genetic variability of common Dolichos bean. Indian Journal of Horticulture 49: 270273.
Borba, TCO, Brondani, RPV, Breseghello, FA, Coelho, SG, Mendonca, JA, Rangel, PHN and Brondani, C (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genetics and Molecular Biology 33: 515524.
Bradbury, P, Zhang, Z, Kroon, DE, Terry, MC, Yogesh, R and Buckler, ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: 26332635.
Braulio, JS, Axel, D, Raja, R and Sylvie, C (2013) Genetic characterization of a core collection of flax (Linum usitatissimuml.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types. BMC Plant Biology 13: 78.
Breseghello, F and Sorrells, ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Science 46: 13231330.
Burton, G and De Vane, EH (1953) Estimating heritability in tall Festuca (Festuca arundinaceae) from replicated clonal material. Agronomy Journal 45: 478481.
Byregowda, M, Gireesh, G, Ramesh, S, Mahadevu, P and Keerthi, CM (2015) Descriptors of dolichos bean (Lablab purpureus L.). Journal of Food Legumes 28: 203214.
Campbell, BT, Baenziger, PS, Gill, KS, Eskridge, KM, Budak, H, Erayman, M and Yen, Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Science 43: 14931505.
Doerge, RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nature Reviews Genetics 3: 4352.
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 1115.
Ebert, AW (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6: 319335.
Engle, LM and Altoveris, NC (2000) Collection, conservation and utilization of indigenous vegetables. In: Proceedings of a workshop, Asian Vegetable Research and Development Centre (AVRDC), Shanhua, Taiwan, 16–18 August 1999, pp. 142.
Evanno, GG, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 26112620.
Excoffier, L, Smouse, PE and Quattro, JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479491.
Excoffier, L, Laval, G and Schneider, S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 4750.
Falush, D, Stephens, M and Pritchard, JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 15671587.
Falush, D, Stephens, M and Pritchard, JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology 7: 574578.
Federer, WT (1956) Augmented (or hoonuiaku) designs. Hawaii Plant Research 2: 191208.
Fuller, DQ (2003) African crops in prehistoric South Asia: a critical review. In: Neumann, K, Butler, A and Kahlheber, S (eds) Food, Fuel, Fields – Progress in African Archaeobotany. Köln, Germany: Heinrich-Barth-Institute, Africa Prehistorica 15: 239271.
Gupta, P, Rustgi, S and Kulwal, P (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology 57: 461485.
Holland, JB (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10: 156161.
Jadhav, AA, Rayate, SJ, Mhase, LB, Thudi, M, Chitikineni, A, Harer, PN, Jadhav, AS, Varshney, RK and Kulwal, PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). Journal of Genetics 94: 279286.
Kim, KW, Chung, HK, Cho, GT, Ma, KH, Chandrabalan, D, Gwag, JG, Kim, TS, Cho, EG and Park, YJ (2007) Power core: a programme applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23: 21552162.
Koppolu, R, Upadhyaya, HD, Dwivedi, SL, Hoisington, DA and Vershney, RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biology 10: 1521.
Kottapalli, KR, Burow, MD, Burow, G, Burke, J and Puppala, N (2007) Molecular characterization of the U.S. Peanut mini core collection using microsatellite markers. Crop Research 47: 17181727.
Kukade, SA and Tidke, JA (2014) Reproductive biology of Dolichos lablab L. (Fabaceae). Indian Journal of Plant Science 3: 2225.
Kumar, J, Choundary, AK, Solanki, RK and Pratap, A (2011) Towards marker-assisted selection in pulses: a review. Plant Breeding 130: 297313.
Laurentin, H (2009) Data analysis for molecular characterization of plant genetic resources. Genetic Resources and Crop Evolution 56: 277292.
Liu, K and Muse, SV (2005) Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 21282129.
Liu, L, Wang, L, Yao, J, Zhang, Y and Zhao, C (2010) Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Molecular Plant Breeding 1: 1011.
Macky, I and Powell, W (2007) Methods for linkage disequilibrium in crops. Trends in Plant Science 292: 5763.
Miller, PA and Rawlings, JO (1967) Breakup of initial linkage blocks in cotton Gossypium hirsutum L. Crop Science 11: 695698.
Morgante, M, Hanafey, M and Powell, W (2002) Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nature Genetics 30: 194200.
Murray, SC, Rooney, WL, Hamblin, MT, Mitchell, SE and Kresovich, S (2009) Sweet sorghum genetic diversity and association mapping for brix and height. Plant Genome 2: 4862.
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proceedings of National Academy of Science 70: 33213323.
Nemli, S, Asciogul, TK, Kay, HB, Kahraman, A, Siyok, DE and Tanyolac, B (2014) Association mapping for five agronomic traits in the common bean (Phaseolus vulgaris L.). Journal of the Science of Food and Agriculture 94: 31413151.
Neumann, K, Kobiljski, B, Dencic, S, Vershney, RK and Borner, A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Molecular Breeding 27: 3758.
Nordborg, M and Donnelly, P (1997) The coalescent process with setting genetics. Trends in Genetics 146: 11851195.
Nordborg, M and Tavare, S (2002) Linkage disequilibrium: what history has to tell us. Trends in Genetics 18: 8390.
Pitchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multi-locus genotype data. Genetics 155: 945959.
Qiu, LL, Xing, LL, Guo, Y, Wang, J, Jackson, SA and Chang, RZ (2013) A platform for soybean molecular breeding: the utilization of core collections for food security. Plant Molecular Biology 83: 4150.
Rakshit, A, Rakshit, S, Singh, J, Chopra, SK, Balyan, HS, Gupt, PK and Bhat, SR (2010) Association of AFLP and SSR markers with agronomic and fiber quality traits in Gossypium hirsutum L. Journal of Genetics 89: 155162.
Risch, N and Merikangas, K (1996) The future of genetic studies of complex human diseases. Science 273: 15161517.
Saravanan, S, Shanmugasundaram, P, Senthil, N and Veerabadhiram, P (2013) Comparison of genetic relatedness among Lablab bean (Lablab purpureus L. sweet) genotypes using DNA markers. International Journal of Integrative Biology 14: 2330.
Smartt, J (1985) Evolution of grain legumes II. Old and new world pulses of lesser economic importance. Experimental Agriculture 21: 118.
Soto-Cerda, BJ, Duguid, S, Booker, H, Rowland, G, Diederichsen, A and Cloutier, S (2014) Association mapping of seed quality traits using the Canadian flax (Linum usitatissimum L.) core collection. Theoretical and Applied Genetics 127: 881896.
Storey, JD and Tibshirani, R (2003) Statistical significance for genome wide studies. Proceedings of National Academy of Science 100: 94409445.
Thorsberry, JM, Goodman, MM, Doeblay, J, Kresovich, S, Neilson, D and Buckler, ES (2001) Dwarf 8 polymorphisms associate with variation in flowering time. Nature Genetics 28: 286289.
Upadhyaya, HD, Gowda, CLL and Sastry, DVSSR (2008) Plant genetic resources management: collection, characterization, conservation and utilization. e-Journal of the SAT Agricultural Research 6: 115.
Vaijayanthi, PV, Ramesh, S, Byregowda, M, Mohan Rao, A, Keerthi, CM and Marry Reena, GA (2015a) Genetic variability for morpho-metric traits in dolichos bean (Lablab purpureus L.). Journal of Food Legumes 28: 510.
Vaijayanthi, PV, Ramesh, S, Byregowda, M, Mohan Rao, A, Jayarame, Gowda, Ramappa, HK, Keerthi, CM and Rajendra Prasad, BS (2015b) Development and validation of a core set of dolichos bean germplasm. International Journal of Vegetable Science 21: 419428.
Wang, C, Chen, H, Zhi, L, Yang, W, Li, Y, Wang, H, Li, B, Zhao, M, Chen, and Diao, X (2010) Population genetics of foxtail millet and its wild ancestor. BMC Genetics 11: 90.
Wang, R, Yu, Y, Zhao, J, Shi, Y, Song, Y, Wang, T and Li, Y (2008) Population structure and linkage disequilibrium of a minicore set of maize inbred lines in China. Theoretical and Applied Genetics 117: 11411153.
Weir, BS and Cockerham, CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.
Wen, W, Mei, H, Feng, F, Yu, S, Huang, Z, Wu, J, Chen, L, Xu, X and Luo, L (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theoretical and Applied Genetics 119: 459470.
Whitt, SR and Buckler, ES (2003) Using natural allelic diversity to evaluate gene function. Methods in Molecular Biology 236: 123139.
Yu, J and Buckler, ES (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17: 16.
Yu, J, Pressoir, G, Briggs, WH, Vroh, BI, Yamasaki, M, Doebley, JF, Mcmullen, M D, Gaut, BS, Nielsen, DM, Holland, JB, Kresovich, S and Buckler, ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Genetics 38: 203208.
Zhao, K, Aranzana, S, Kim, C, Lister, C, Shindo, C, Tang, C, Toomajian, H, Zheng, C, Dean, P, Marjoram, and Nordborg, M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genetics 3: 14.
Zhu, CS, Gore, M, Buckler, ES and Yu, JM (2008) Status and prospects of association mapping in plants. Plant Genome 1: 520.

Keywords

Type Description Title
WORD
Supplementary materials

Vaijayanthi et al. supplementary material
Table S1-S2

 Word (27 KB)
27 KB

Genome-wide marker-trait association analysis in a core set of Dolichos bean germplasm

  • P. V. Vaijayanthi (a1), S. Ramesh (a1), M. B. Gowda (a2), A. M. Rao (a1) and C. M. Keerthi (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed