Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T21:37:14.471Z Has data issue: false hasContentIssue false

Genetic diversity of Colobanthus quitensis across the Drake Passage

Published online by Cambridge University Press:  28 August 2013

Ian S. Acuña-Rodríguez*
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile Departamento de Biología, Universidad de La Serena, La Serena, Chile
Rómulo Oses
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
Jorge Cortés-Vasquez
Affiliation:
Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
Cristian Torres-Díaz
Affiliation:
Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile
Marco A. Molina-Montenegro
Affiliation:
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
*
*Corresponding author. E-mail: ian.acuna@ceaza.cl

Abstract

The Drake Passage arises as a likely route for gene flow into Antarctica, as it is the shortest path between this continent and the rest of the world. Despite this, long-distance dispersion into Antarctica could be particularly complex for terrestrial biota. To compare the levels of genetic diversity between Antarctic and South American populations of the Antarctic pearlwort, Colobanthus quitensis, we conducted the first estimation of genetic diversity in this species using amplified fragment length polymorphism. Four populations across the Drake Passage were selected and their genetic composition was characterized. Differences among the levels of genetic diversity were found between the populations analysed as well as between their allelic identities. However, interestingly, their spatial distribution across the Drake Passage suggests a north-to-south gradient of increasing genetic diversity.

Type
Short Communications
Copyright
Copyright © NIAB 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, DKA, Hodgson, DA, Convey, P, Allen, CS and Clarke, A (2006) Incursion and excursion of Antarctic biota: past, present and future. Global Ecology and Biogeography 15: 121142.CrossRefGoogle Scholar
Birkenmajer, K, Ochyra, R, Olsson, IU and Stuchlik, L (1985) Mid-Holocene radiocarbon-dated peat at Admirality Bay King George Island (South Shetlands, West Antarctica). Bulletin of the Polish Academy of Sciences 33: 712.Google Scholar
Chwedorzewska, KJ and Bednarek, PT (2008) Genetic variability in the Antarctic hairgrass Deschampsia antarctica Desv. from maritime Antarctic and sub-Antarctic sites. Polish Journal of Ecology 56: 209216.Google Scholar
Chwedorzewska, KJ and Bednarek, PT (2011) Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments on King George Island. Polish Polar Research 32: 1526.Google Scholar
Chwedorzewska, KJ, Bednarek, PT and Puchalski, J (2004) Molecular variation of Antarctic grass Deschampsia antarctica Desv. from King George Island (Antarctica). Acta Societatis Botanicorum Poloniae 73: 2329.Google Scholar
Clarke, A, Barnes, DK and Hodgson, DA (2005) How isolated is Antarctica? Trends in Ecology and Evolution 20: 13.CrossRefGoogle ScholarPubMed
Convey, P (1996) Reproduction of Antarctic flowering plants. Antarctic Science 8: 127134.Google Scholar
Convey, P and Stevens, MI (2007) Antarctic biodiversity. Science 317: 11771178.Google Scholar
Convey, P, Gibson, JA, Hillenbrand, CD, Hodgson, DA, Pugh, PJ, Smellie, JL and Stevens, MI (2008) Antarctic terrestrial life – challenging the history of the frozen continent? Biological Reviews 83: 103117.Google Scholar
Doyle, JJ and Doyle, JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 1115.Google Scholar
Frankham, R, Briscoe, DA and Ballou, JD (2002) Introduction to Conservation Genetics. Cambridge: Cambridge University Press, p. 617.CrossRefGoogle Scholar
Gianoli, E, Inostroza, P, Zúñiga-Feest, A, Reyes-Díaz, M, Cavieres, LA, Bravo, LA and Corcuera, LJ (2004) Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of Central Chile and the Maritime Antarctic. Arctic, Antarctic, and Alpine Research 36: 484489.CrossRefGoogle Scholar
Montana State University (1998) GENOGRAPHER Version 1.1.0. http://www2.hawaii.edu/~durrell/Software/1FA1F517-DC84–4314-AA4D-764B8F7A327D.html (accessed by 3 May 2013).Google Scholar
Mosyakin, SL, Bezusko, LG and Mosyakin, AS (2007) Origins of native vascular plants of Antarctica: comments from historical phytogeography viewpoint. Cytology and Genetics 41: 5463.Google Scholar
Muñoz, J, Felicísimo, AM, Cabezas, F, Burgaz, AR and Martínez, I (2004) Wind as a long-distance dispersal vehicle in the southern hemisphere. Science 304: 11441147.Google Scholar
Parnikoza, I, Kozeretska, I and Kunakh, V (2011) Vascular plants of the Maritime Antarctic: origin and adaptation. American Journal of Plant Sciences 2: 381395.Google Scholar
Parnikoza, I, Dykyy, I, Ivanets, V, Kozeretska, I, Kunakh, V, Rozhok, A, Ochyra, R and Convey, P (2012) Use of Deschampsia antarctica for nest building by the kelp gull in the Argentine Islands area (maritime Antarctica) and its possible role in plant dispersal. Polar Biology 35: 17531758.Google Scholar
PE Applied Biosystems (1996) AFLP™ Plant Mapping Protocol. Foster City: PE Applied Biosystems.Google Scholar
Peakall, R and Smouse, PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288295.Google Scholar
Smith, RIL (2003) The enigma of Colobanthus quitensis and Deschampsia antartica in Antarctica. In: Huiskes, AHL, Gieskes, WWC, Rozema, J, Schorno, RML, van der Vies, SM and Wolff, WJ (eds) Antarctic Biology in a Global Context. Leiden: Backhuys Publishers, pp. 234239.Google Scholar
Stevens, MI, Greenslade, P, Hogg, ID and Sunnucks, P (2006) Southern hemisphere springtails: could any have survived glaciations of Antarctica? Molecular Biology and Evolution 89: 874882.Google Scholar
van de Wouw, M, van Dijk, P and Huiskes, HL (2008) Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antarctica Desv.). Journal of Biogeography 35: 365376.CrossRefGoogle Scholar
Volkov, RA, Kozeretska, IA, Kyryachenko, SS, Andreev, IO, Maidanyuk, DN, Parnikoza, IY and Kunakh, VA (2010) Molecular evolution and variability of ITS1–ITS2 in populations of Deschampsia antarctica from two regions of the maritime Antarctic. Polar Science 4: 469478.Google Scholar
Vos, P, Hoger, R, Bleeker, M, Reijans, M, Van de Lee, T, Hornes, M, Frijters, A, Pot, J, Peleman, J, Kuiper, M and Zabeau, M (1995) AFLP: a new technique for DAN fingerprinting. Nucleic Acid Research 23: 44074414.CrossRefGoogle Scholar
Zar, JH (1999) Biostatistical Analysis. 4th edn. New Jersey: Prentice Hall, p. 663.Google Scholar