Skip to main content Accessibility help
×
Home

Genetic diversity and adaptive variations under static and dynamic management: a case of rice landraces from parts of Odisha in India

  • M. Logapriyan (a1), I. S. Bisht (a1), K. V. Bhat (a1) and D. Pani (a2)

Abstract

In the present study, inter- and intrapopulation diversity of five named rice landraces from parts of Odisha state of India representing static and dynamic management was examined using 14 sequence-tagged microsatellite site primer pairs. A total of 64 alleles were detected in ten populations of the five named landraces. The number of alleles ranged from 2 to 7, with an average of 4.57 alleles per locus. Of the 64 alleles, 60 were common and four were rare. Moderate-to-low diversity was observed in the landrace populations, with the number of alleles per population ranging from 16 to 25 and the percentage of polymorphism ranging from 14.29 to 64.29, respectively. The analysis of molecular variance indicated a highest variation of 75.7% among populations within groups (static vs. dynamic). The pairwise estimates of F ST revealed very high significant population differentiation, which ranged from 0.68 to 0.89, indicating that the populations share limited genetic diversity among them. However, not many variations were observed in the phenotypes of populations representing static and dynamic management. This shows that adaptations of a population apparently persist over generations, but the underlying genotypes change and new alleles or combinations may arise and increase in frequency at the expense of other alleles that have disappeared. The importance of population biology research for in situ conservation requires both descriptive and hypothesis testing to guide technical improvement and management of landrace populations.

Copyright

Corresponding author

* Corresponding author. E-mail: bishtis@nbpgr.ernet.in, bishtis@rediffmail.com

References

Hide All
Bioversity International, IRRI and WARDA(2007) Descriptors for Wild and Cultivated Rice (Oryza spp.). Rome/Los Banos/Cotonou: Bioversity International/International Rice Research Institute/WARDA, Africa Rice Center.
Breese, EL (1989) Regeneration and Multiplication of Germplasm Resources in Seed Gene Banks: The Scientific Background. Rome: IBPGR.
Brown, AHD (2000) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush, SB (ed.) Genes in the Field: On-farm Conservation of Crop Diversity. International Plant Genetic Resources Institute (IPGRI)/International Development Research Centre (IDRC)/Lewis Publishers, Boca Raton, FL, USA, pp. 2948.
Brown, AHD, Brubaker, CL and Grace, JP (1997) Regeneration of germplasm samples: wild versus cultivated plant species. Crop Science 37: 713.
Brush, SB (1991) A farmer-based approach to conserving crop germplasm. Economic Botany 45: 153165.
Brush, SB (1995) In situ conservation of landraces in centres of crop diversity. Crop Science 35: 346354.
Brush, SB (2000) The issues of in situ conservation of crop genetic resources. In: Brush, SB (ed.) Genes in the Field: On-farm Conservation of Crop Genetic Diversity. International Development Research Centre (IDRC)/International Plant Genetic Resources Institute (IPGRI)/Lewis Publishers, Boca Raton, FL, USA, pp. 328.
Cohen, JI, Williams, JT, Plucknett, DL and Shands, H (1991) Ex situ conservation of plant genetic resources: global development and environmental concerns. Science 253: 866872.
Excoffier, L and Lischer, HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564567.
Frankel, OH, Brown, AHD and Burdon, JJ (1995) The Conservation of Plant Biodiversity. Cambridge University Press, UPH, Shaftesbury Road Cambridge CB2 8BS, UK.
Jan SJK (2002) PIC calculator. Available at http://www.liv.ac.uk/~kempsj/pic.html .
Jarvis, DI, Myer, L, Klemick, H, Guarino, L, Smale, M, Brown, AHD, Sadiki, M, Sthapit, B and Hodgkin, T (2000) A Training Guide for In Situ Conservation On-farm, Version 1. Rome: International Plant Genetic Resources Institute.
Kimura, M (1968) Evolutionary rate at the molecular level. Nature 217: 624626.
Kimura, M (1991) The neutral theory of molecular evolution: a review of recent evidence. Japanese Journal of Genetics 66: 367386.
Kumar, S, Bisht, IS and Bhat, KV (2010) Population structure of rice (Oryza sativa) landraces under farmer management. Annals of Applied Biology 156: 137146.
Kumar, S, Pandey, A, Bisht, IS, Bhat, KV and Mehta, PS (2010) Diversity among different populations of a rice (Oryza sativa L.) landrace from north-western Indian Himalayas. Plant Genetic Resources: Characterization and Utilization 8: 151158.
Louette, D, Charrier, A and Berthaud, J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Economic Botany 51: 2038.
MacArthur, RH and Wilson, EO (1967) The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.
Marshall, DR (1989) Crop genetic resources: current and emerging issues. In: Brown, AHD, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant Population Genetics, Breeding and Genetic Resources. Sunderland, MA: Sinauer and Associates, Inc.
Maxted, N, Ford-Lloyd, BY and Hawkes, JG (1997) Complementary conservation strategies. In: Maxted, N, Ford-Lloyd, BV and Hawkes, JG (eds) Plant Genetic Conservation: The In Situ Approach. London: Chapman & Hall.
Pandey, A, Bisht, IS and Bhat, KV (2012) Population structure of rice (Oryza sativa) landraces from high altitude area of Indian Himalayas. Annals of Applied Biology 160: 1624.
Pandey, A, Bisht, IS, Bhat, KV and Mehta, PS (2011) Role of informal seed system in promoting landrace diversity and their on-farm conservation: a case study of rice in Indian Himalayas. Genetic Resources and Crop Evolution 58: 12131224.
Plucknett, DL, Smith, NJ, Williams, JT and Anishetty, NM (1987) Genebanks and the World's Food. Princeton, NJ: Princeton University Press, p. 247.
Pusadee, T, Jamjod, S, Chiang, YC, Rerkasem, B and Schaal, BA (2009) Genetic structure and isolation by distance in a landrace of Thai rice. PNAS 106: 1388013885.
Qualset, CO, Damania, AB, Zanatta, ACA and Brush, SB (1997) Locally-based crop plant conservation. In: Maxted, N, Ford-Lloyd, BV and Hawkes, JG (eds) Plant Genetic Conservation: The In Situ Approach. London: Chapman and Hall.
Rohlf, FJ (2000) NTSYS-PC Version 2.02j. Setauket, NY: Exeter Software.
Saghai-Maroof, MA, Soliman, KM, Jorgensen, RA and Allard, RW (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. PNAS 81: 80148018.
Sreejayan Kumar, US, Varghese, G, Jacob, TM and Thomas, G (2011) Stratification and population structure of the genetic resources of ancient medicinal rice (Oryza sativa L.) landrace Njavara. Genetic Resources and Crop Evolution 58: 697711.
Weir, BS and Cockerham, CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.
Yeh, FC, Yang, RC, Boyle, TBJ, Ye, ZH and Mao, JX (2000) POPGENE 32, Microsoft Windows-based Software for Population Genetic Analysis (Version 1.32). Edmonton, AB: Molecular Biology and Biotechnology Centre, University of Albert.

Keywords

Type Description Title
WORD
Supplementary materials

Logapriyan Supplementary Material
Table S1

 Word (177 KB)
177 KB

Genetic diversity and adaptive variations under static and dynamic management: a case of rice landraces from parts of Odisha in India

  • M. Logapriyan (a1), I. S. Bisht (a1), K. V. Bhat (a1) and D. Pani (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed