Skip to main content Accessibility help
×
Home

Characterization and genetic potential of African pearl millet named landraces conserved at the ICRISAT genebank

  • H. D. Upadhyaya (a1) (a2) (a3), K. N. Reddy (a1), M. Irshad Ahmed (a1), Senthil Ramachandran (a1), Vinod Kumar (a1) and Sube Singh (a1)...

Abstract

The world collection of pearl millet at ICRISAT genebank includes 19,696 landraces. Passport and characterization data of 2,929 accessions belonging to 89 named landraces originating in 15 countries of Africa was used to study the adoption pattern and genetic potential. Out of 89 named landraces under study, 71 were grown in one country, 11 in two countries, six in three countries and one in four countries. Latitude and prevailing climate at collection sites were found as the important determinants of cultivation pattern of landraces. A hierarchical cluster analysis using 12 agronomic traits resulted in five clusters. Cluster 1 for late flowering, short height in rainy season, high tillering and thin panicles; cluster 2 for early flowering; cluster 3 for stout panicles in both the seasons and larger seeds and cluster 5 for longer panicles in both seasons, were found as promising sources. IP 8957, IP 8958, IP 8964 of Iniadi landrace for short height, downy mildew and rust resistance and high seed iron and zinc contents; IP 17521 of Gnali (106.9 ppm) and IP 11523 of Idiyouwe (106.5 ppm) for high seed iron content; IP 17518 of Gnali (79.1 ppm) and IP 11535 of Iniadi (78.4 ppm) for high seed zinc content were the important sources. All accessions of Raa for high seed protein content (>15%) and those of Enele for drought tolerance, were found to be promising sources. Further evaluation of promising sources identified in this study is needed for enhanced utilization of germplasm in pearl millet improvement.

Copyright

Corresponding author

*Corresponding author. E-mail: H.Upadhyaya@cgiar.org

References

Hide All
Andrews, DJ and Anand Kumar, K (1996) Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Genetic Resources Newsletter 105: 1522.
Bidinger, FR, Mahalakshmi, V and Rao, GDP (1987) Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. I. Factors affecting yield under stress. Australian Journal of Agriculture Research 38: 3748.
Bidinger, FR, Sharma, MM and Yadav, OP (2008) Performance of landraces and hybrids of pearl millet (Pennisetum glaucum (L.) R. Br.) under good management in the arid zone. Indian Journal of Genetics and Plant Breeding 68: 146148.
CGIAR Research Program on Dryland Cereals (2014) Pearl Millet Impacts. Patancheru, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
Cleveland, DA, Soleri, D and Smith, SE (1994) Do folk crop varieties have a role in sustainable agriculture? BioScience 44: 740751.
Curtis, DL (1968) The relation between yield and date of heading of Nigerian sorghums. Experimental Agriculture 4: 93101.
Dwivedi, SL, Upadhyaya, HD, Senthilvel, S, Hash, CT, Fukunaga, K, Xiamin, D, Dipak, S, Baltensperger, D and Prasad, M (2012) Millets: genetic and genomic resources. In: Janick, J (ed.) Plant Breeding Reviews, 1st edn, vol. 35. Hoboken, New Jersey, USA: Wiley-Blackwell, Published by Jhon Wiley & Sons, Inc.
Dwivedi, SL, Ceccarelli, S, Blair, MW, Upadhyaya, HD, Ashok, KA and Ortiz, R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends in Plant Science 21: 3142.
Erskine, E (1997) Lessons for breeders from landraces of lentil. Euphytica 93: 107112.
Escribano, MR, Santalla, M, Casquero, PA and De Ron, AM (1998) Patterns of genetic diversity in landraces of common bean (Phaseolus vulgaris L.) from Galicia. Plant Breeding 117: 4956.
Fussel, LK, Bidinger, FR and Bieler, P (1991) Crop physiology and breeding for drought tolerance: research and development. Field Crops Research 27: 183199.
Gemechu, K, Endashaw, B, Imtiaz, M and Dagne, K (2012) Genetic vulnerability of modern crop cultivars: causes, mechanism and remedies. International Journal of Plant Research 2: 6979.
Hash, CT, Bhasker Raj, AG, Appa Rao, S and Singh, U (1997) New sources of yellow endosperm and ß-carotene in pearl millet. [Abstract of poster presentation] In: Proceedings of the International Conference of Genetic Improvement of Sorghum and Pearl Millet, 22–27 September 1996, Holiday Inn Plaza, Lubbock, Texas. Lincoln, NE, USA: INTSORMIL, p. 650.
Haussmann, BIG, Boubacar, A, Boureima, SS and Vigouroux, Y (2006) Multiplication and preliminary characterization of West and Central African pearl millet landraces. International Sorghum and Millets Newsletter 47: 110112.
Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978. doi: 10.1002/joc.1276. Available at http://www.worldclim.org/current in June 2011.
IBPGR and ICRISAT (1993) Descriptors for Pearl millet [Pennisetum glaucum (L.) R. Br.]. Rome, Italy: International Board for Plant Genetic Resources, and Patancheru, India: International Crops Research Institute for the Semi-Arid Tropics, p. 43.
IFAD (International Fund for Agricultural Development) (1999) Farmer participatory testing of technologies to increase sorghum and pearl millet production in the Sahel. Available at http://www.ifad.org/grants.
Keuls, M (1952) The use of the “Studentized range” in connection with an analysis of variance. Euphytica 1: 112122.
Kowal, JM and Kassam, AH (1978) Agricultural Ecology of Savanna. A Study of West Africa. Oxford, UK: Clarendon Press, p. 403.
Levene, H (1960) Robust tests for equality of variances. In: Olkin, I (ed.) Contributions to Probability and Statistics: Essays in Honour of Harold Hotelling. Stanford: Stanford University Press, pp. 278292.
Mansholt, UJ (1909) Van Pesch Plantenteelt, beknote handleiding tot de kennis van den Nederlandschen landbouw, 3rd revised edn, pt 2. Zwolle: Plantenteelt, 228 pp.
MS EncartaR Interactive World Atlas (2000) 1995–1999 Microsoft Corporation. Redmond, WA: One Microsoft Way, pp. 98052106399.
Newman, D (1939) The distribution of range in samples from a normal population expressed in terms of an independent estimate of standard deviation. Biometrika 31: 2030.
Newton, AC, Akar, T, Baresel, JP, Rebeli, PJ, Bettencourt, E, Bladenopoulos, KV, Czembor, JH, Fasoula, DA, Katsiotis, A, Koutis, K, Koutsika-Sotiriou, M, Kovacs, G, Larsson, H, Pinheiro de Carvalho, MAA, Rubiales, D, Russell, J, Dos Santos, TMM and Vaz Patto, MC (2010) Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development 30: 237269.
Ong, CK (1983) Response to temperature in a stand of pearl millet (Pennisetum typhoides S & H):II. Reproductive development. Journal of Experimental Botany 34: 337348.
Patra, BC (2000) Collection and characterization of rice genetic resources from Keonjhar district of Orissa. Oryza 34: 324326.
Pearson, CJ and Coaldrake, PD (1983) Pennisetum americanum as a grain crop in eastern Australia. Field Crops Research 7: 265282.
Quendeba, B, Ejeta, G, Hanna, WW and Kumar, KA (1995) Diversity among African pearl millet landrace populations. Crop Science 35: 919924.
Rai, KN, Hash, CT, Singh, AK and Velu, G (2008) Adaptation and quality traits of a germplasm derived commercial seed parent of pearl millet. Plant Genetic Resources Newsletter 154: 2024.
Rai, KN, Velu, G, Govindraj, M, Upadhyaya, HD, Rao, AS, Shivade, H and Reddy, KN (2015) Iniadi pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities. Plant Genetic Resources: Characterization and Utilization 13: 7582.
Reddy, KN, Rao, K and Irshad Ahmed, B (2004) Geographical patterns of diversity in pearl millet germplasm from Yemen. Genetic Resources and Crop Evolution 51: 513517.
Richharia, RH (1979) An aspect of genetic diversity in Rice. Oryza 16: 131.
Sahrawat, KL (2002a) Sulfuric acid-selenium digestion for multi-element analysis in a single plant digest. Communications in Soil Science and Plant Analysis 33: 37573765.
Sahrawat, KL (2002b) Sulfuric acid-selenium digestion for multi-element analysis in a single plant digest. Communications in Soil Science and Plant Analysis 33: 95102.
Shannon, CE and Weaver, W (1949) The Mathematical Theory of Communication. Urbana: University of Illinois Press.
Sharma, R, Upadhyaya, HD, Manjunatha, SV, Rai, KN, Gupta, SK and Thakur, RP (2013) Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Disease 97: 189195.
Singh, SD, Wilson, JP, Navi, SS, Talukdar, BS, Hess, DE and Reddy, KN (1997) Screening Techniques and Sources of Resistance to Downy Mildew and Rust in Pearl Millet. (In: En. Summaries in En, Fr, Es.). Information Bulletin no. 48. Patancheru, AP, India: International Crops Research Institute for the Semi-Arid Tropics, 36 pp. ISBN 92-9066-352-9.
Tania, CCV, Maxted, N, Scholten, M and Liod, BF (2005) Defining and identifying crop landraces. Plant Genetic Resources: Characterization and Utilization 3: 373384.
Thakur, RP, Williams, RJ and Rao, VP (1982) Development of ergot resistance in pearl millet. Phytopathology 72: 406408.
Thakur, RP, Rai, KN, King, SB and Rao, VP (1993) Identification and Utilization of Ergot Resistance in Pearl Millet. (In: En. Summaries in En. Fr. Es.) Research Bulletin no. 17. Patancheru, AP, India: International Crops Research Institute for the Semi-Arid Tropics, 40 pp. ISBN 92-9066-281-6.
Tostain, S (1994) Isozymic classification of pearl millet (Pennisetum glaucum, Poaceae) landraces from Niger (West Africa). Plant Systematics and Evolution 193: 8193.
Upadhyaya, HD and Gowda, CLL (2009) Managing and Enhancing the Use of Germplasm – Strategies and Methodologies. Technical Manual no.10. Patancheru, AP, India: International Crops Research Institute for the Semi-Arid Tropics, 236 pp.
Upadhyaya, HD, Reddy, KN, Gowda, CLL, Irshad Ahmed, M and Singh, S (2007) Agroecological patterns of diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] germplasm from India. Indian Journal of Plant Genetic Resources 20: 178185.
Upadhyaya, HD, Reddy, KN, Irshad Ahmed, M, Gowda, CLL and Bettina, H (2009) Identification of geographical gaps in the pearl millet germplasm conserved at ICRISAT genebank from West and Central Africa. Plant Genetic Resources: Characterization and Utilization 8: 4551.
Upadhyaya, HD, Reddy, KN, Irshad Ahmed, M, Dronavalli, N and Gowda, CLL (2012a) Latitudinal variation and distribution of photoperiod and temperature sensitivity for flowering in the world collection of pearl millet germplasm at ICRISAT genebank. Plant Genetic Resources: Characterization and Utilization 10: 5969.
Upadhyaya, HD, Reddy, KN, Irshad Ahmed, M and Gowda, CLL (2012b) Identification of gaps in pearl millet germplasm from East and Southern Africa conserved at the ICRISAT genebank. Plant Genetic Resources: Characterization and Utilization 10: 202213.
Upadhyaya, HD, Reddy, KN, Singh, S, Gowda, CLL, Irshad Ahmed, M and Ramachandran, S (2014) Latitudinal patterns of diversity in the world collection of pearl millet landraces at the ICRISAT genebank. Plant Genetic Resources: Characterization and Utilization 12: 91102.
VSN International (2010) GenStat Software for Windows. Release 13.1. Hemel Hempstead, UK: VSN International Ltd.
Ward, JH (1963) Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58: 236244.
Wareing, PF and Phillips, IDJ (1981) Growth and Differentiation in Plants, 3rd edn. Oxford, UK: Pergamon Press, 353 pp.
Wilson, JP, Burton, GW, Wells, HD, Zongo, JD and Dicko, IO (1989) Leaf spot, rust and smut resistance in pearl millet landraces from Central Burkina Faso. Plant Disease 73: 345349.
Yadav, OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crops Research 118: 5156.
Yadav, OP and Bidinger, FR (2007) Utilization, diversification and improvement of landraces for enhancing pearl millet productivity in arid environments. Annals of Arid Zone 46: 4957.
Yadav, OP and Rai, KN (2013) Genetic improvement of pearl millet in India. Agriculture Research 2: 275292.
Yadav, OP, Weltzien–Rattunde, E and Bidinger, FR (2003) Genetic variation for drought response among landraces of pearl millet (Pennisetum glaucum). Indian Journal of Genetics and Plant Breeding 63: 3740.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Upadhyaya supplementary material
Figure S1

 Unknown (230 KB)
230 KB
WORD
Supplementary materials

Upadhyaya supplementary material
Tables S1-S3

 Word (412 KB)
412 KB

Characterization and genetic potential of African pearl millet named landraces conserved at the ICRISAT genebank

  • H. D. Upadhyaya (a1) (a2) (a3), K. N. Reddy (a1), M. Irshad Ahmed (a1), Senthil Ramachandran (a1), Vinod Kumar (a1) and Sube Singh (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed